Home
Class 12
MATHS
If y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1...

If `y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1)`, then y can be

A

cot x

B

`- tan x`

C

`-cot((pi)/(4)+x)`

D

`tan((pi)/(4)+x)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

Since `1 pm sin theta = (cos.(theta)/(2)pm sin.(theta)/(2))^(2)`
`therefore y=(pm(cos 2x - sin 2x)+1)/(pm (cos 2x+sin 2x)-1)`
Taking '+' sign in Nr. And Dr. we get
`y=(1+cos2x -sin 2x)/(sin 2x-(1-cos 2x))`
`=(cos^(2)x-2sin x cos x)/(2 sin x cos x -2 sin^(2)x)=(cos x)/(sin x)=cot x`
Taking '-' sign in Nr. and Dr. we get
`y=(sin 2x + 1-cos 2x)/(-sin 2x -(1+cos 2x))`
`=(2 sin x cos x + 2 sin^(2)x)/(-2sin x cos x-2cos^(2)x)`
`=-tan x` Taking '+' sign in Nr. and '-' sign in Dr. we get
`y=(1+cos 2x-sin 2x)/(-sin 2x-(1+cos 2x))`
`=(2 cos^(2)x-2 sin x cos x)/(-2sin x cos x -2 cos^(2)x)`
`=(sin x - cos x)/(sin x + cos x)`
`= tan (x=(pi)/(4))`
`=-cot((pi)/(2)+x -(pi)/(4))`
`=-cot((pi)/(4)+ x)`
Taking '-' sign in Nr. and '+' sign in Dr. we get
`y=(sin 2x + 1-cos 2x)/(sin 2x-(1-cos 2x))`
`=(2 sin x cos x + 2 sin^(2)x)/(2 sin x cos x-2 sin^(2)x)`
`=(cos x + sin x)/(cos x - sin x)`
`=(1+tan x)/(1-tan x)`
`=tan((pi)/(4)+ x)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If y= (sqrt(1-sin4A)+1)/(sqrt(1+sin4A)-1) then one of the values of y is (A) -tanA (B) cotA (C) tan(pi/4+A) (D) -cot(pi/4+A)

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

If y= sin ^-1\ (1)/(sqrt(1+x^2)) then dy/dx at x =0 is :

If y= y=sqrt((1-sin 2x )/(1+sin 2 x)) prove that (dy)/(dx)+sec^2(pi/4-x)=0.

cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

If y = 1/x , then the value of (dy)/(sqrt(1 + y^4)) + (dx)/(sqrt(1 + x^4)) + 3 is equal to

If y = sqrt(sin x + sqrt(sin x + sqrt(sin x + ........... "to " oo))) , then prove that (dy)/(dx) = (cos x)/(2y-1)

y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]