Home
Class 12
MATHS
If ( cos x - cos alpha)/(cos x - cos b...

If ` ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha)` then cos x =

A

(a) `cos x=(cos alpha+cos beta)/(1-cos alpha cos beta)`

B

(b) `cos x=(cos alpha-cos beta)/(1-cos alpha cos beta)`

C

(c) `cos x=(cos alpha+cos beta)/(1+cos alpha cos beta)`

D

(d) `cos x=(cos alpha-cos beta)/(1+cos alpha cos beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos x - \cos \alpha}{\cos x - \cos \beta} = \frac{\sin^2 \alpha \cos \beta}{\sin^2 \beta \cos \alpha}, \] we will follow these steps: ### Step 1: Cross Multiply We start by cross-multiplying the equation to eliminate the fraction: \[ (\cos x - \cos \alpha) \sin^2 \beta \cos \alpha = (\cos x - \cos \beta) \sin^2 \alpha \cos \beta. \] ### Step 2: Expand Both Sides Now, we will expand both sides of the equation: \[ \cos x \sin^2 \beta \cos \alpha - \cos \alpha \sin^2 \beta \cos \alpha = \cos x \sin^2 \alpha \cos \beta - \cos \beta \sin^2 \alpha \cos \beta. \] ### Step 3: Rearrange Terms Next, we will rearrange the equation to group all terms involving \(\cos x\) on one side: \[ \cos x \sin^2 \beta \cos \alpha - \cos x \sin^2 \alpha \cos \beta = \cos \alpha \sin^2 \beta \cos \alpha - \cos \beta \sin^2 \alpha \cos \beta. \] ### Step 4: Factor Out \(\cos x\) We can factor \(\cos x\) out from the left-hand side: \[ \cos x (\sin^2 \beta \cos \alpha - \sin^2 \alpha \cos \beta) = \cos \alpha \sin^2 \beta \cos \alpha - \cos \beta \sin^2 \alpha \cos \beta. \] ### Step 5: Solve for \(\cos x\) Now, we can solve for \(\cos x\): \[ \cos x = \frac{\cos \alpha \sin^2 \beta \cos \alpha - \cos \beta \sin^2 \alpha \cos \beta}{\sin^2 \beta \cos \alpha - \sin^2 \alpha \cos \beta}. \] ### Step 6: Substitute \(\sin^2\) in Terms of \(\cos^2\) Using the identity \(\sin^2 \theta = 1 - \cos^2 \theta\), we can substitute for \(\sin^2 \alpha\) and \(\sin^2 \beta\): \[ \sin^2 \alpha = 1 - \cos^2 \alpha, \quad \sin^2 \beta = 1 - \cos^2 \beta. \] ### Step 7: Substitute and Simplify Substituting these into our equation gives: \[ \cos x = \frac{\cos \alpha (1 - \cos^2 \beta) \cos \alpha - \cos \beta (1 - \cos^2 \alpha) \cos \beta}{(1 - \cos^2 \beta) \cos \alpha - (1 - \cos^2 \alpha) \cos \beta}. \] ### Step 8: Simplify Further Now, we can simplify both the numerator and the denominator. ### Final Result After simplification, we find: \[ \cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}. \] ### Conclusion Thus, the final answer is: \[ \cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}. \]

To solve the equation \[ \frac{\cos x - \cos \alpha}{\cos x - \cos \beta} = \frac{\sin^2 \alpha \cos \beta}{\sin^2 \beta \cos \alpha}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

Prove that (cos^2 alpha - cos^2 beta)/(cos^2 alpha*cos^2 beta) = tan^2 beta - tan^2 alpha

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

If sin beta is the GM between sin alpha and cos alpha, then cos 2beta=

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=