Home
Class 12
MATHS
If 0 leq theta leq pi and sin(theta/2)...

If `0 leq theta leq pi and sin(theta/2)=sqrt(1+sintheta)-sqrt(1-sintheta)` , then the possible value of `tan theta` is (a) `4/3` (b) 0 (c) `-3/4` (d) `-4/3`

A

`(4)/(3)`

B

0

C

`(-3)/(4)`

D

`(-4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin\left(\frac{\theta}{2}\right) = \sqrt{1 + \sin \theta} - \sqrt{1 - \sin \theta} \), we will follow these steps: ### Step 1: Square both sides Start by squaring both sides of the equation to eliminate the square roots. \[ \sin^2\left(\frac{\theta}{2}\right) = \left(\sqrt{1 + \sin \theta} - \sqrt{1 - \sin \theta}\right)^2 \] ### Step 2: Expand the right side Using the identity \( (a - b)^2 = a^2 - 2ab + b^2 \): \[ \sin^2\left(\frac{\theta}{2}\right) = (1 + \sin \theta) + (1 - \sin \theta) - 2\sqrt{(1 + \sin \theta)(1 - \sin \theta)} \] This simplifies to: \[ \sin^2\left(\frac{\theta}{2}\right) = 2 - 2\sqrt{1 - \sin^2 \theta} \] ### Step 3: Use the Pythagorean identity Recall that \( \sin^2 \theta + \cos^2 \theta = 1 \), so \( \sqrt{1 - \sin^2 \theta} = \cos \theta \): \[ \sin^2\left(\frac{\theta}{2}\right) = 2 - 2\cos \theta \] ### Step 4: Express \( \sin^2\left(\frac{\theta}{2}\right) \) Using the half-angle identity, we know that: \[ \sin^2\left(\frac{\theta}{2}\right) = \frac{1 - \cos \theta}{2} \] ### Step 5: Set the equations equal Now we can set the two expressions for \( \sin^2\left(\frac{\theta}{2}\right) \) equal to each other: \[ \frac{1 - \cos \theta}{2} = 2 - 2\cos \theta \] ### Step 6: Clear the fraction Multiply through by 2 to eliminate the fraction: \[ 1 - \cos \theta = 4 - 4\cos \theta \] ### Step 7: Rearrange the equation Rearranging gives: \[ 4\cos \theta - \cos \theta = 4 - 1 \] \[ 3\cos \theta = 3 \] ### Step 8: Solve for \( \cos \theta \) Dividing both sides by 3: \[ \cos \theta = 1 \] ### Step 9: Find \( \theta \) Since \( \cos \theta = 1 \) implies \( \theta = 0 \) (within the range \( 0 \leq \theta \leq \pi \)). ### Step 10: Calculate \( \tan \theta \) Now, we find \( \tan \theta \): \[ \tan \theta = \tan(0) = 0 \] ### Conclusion Thus, the possible value of \( \tan \theta \) is: \[ \boxed{0} \]

To solve the equation \( \sin\left(\frac{\theta}{2}\right) = \sqrt{1 + \sin \theta} - \sqrt{1 - \sin \theta} \), we will follow these steps: ### Step 1: Square both sides Start by squaring both sides of the equation to eliminate the square roots. \[ \sin^2\left(\frac{\theta}{2}\right) = \left(\sqrt{1 + \sin \theta} - \sqrt{1 - \sin \theta}\right)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If 3tan^(2)theta-2sintheta=0 , then general value of theta is:

If sqrt(3)sintheta-costheta=0 , then one general value of theta is:

if (1-costheta)/(sintheta)=(sqrt(3))/(3) , then theta =

If sintheta-costheta=1, then the value of sin^3theta-cos^3theta is __________

if sintheta-costheta=0, then the value of (sin^4theta+cos^4theta)

If theta=240^@ is the following statement correct? 2sin\ theta/2=sqrt(1+sintheta)-sqrt(1-sintheta)

If sintheta-costheta=1 , then the value of sin^3theta-cos^3theta is __________ .

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is