Home
Class 12
MATHS
The value of expression of (alphatangamm...

The value of expression of `(alphatangamma+betacotgamma)(alphacotgamma+betatangamma)-4alphabetacot^2 2gamma` depends on `alpha` (b) `beta` (c) `gamma` (d) none of these

A

dependent on `alpha`

B

independent of `gamma`

C

dependent on `beta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\alpha \tan \gamma + \beta \cot \gamma)(\alpha \cot \gamma + \beta \tan \gamma) - 4 \alpha \beta \cot^2 2\gamma\) and determine what it depends on, we will break it down step by step. ### Step 1: Expand the Expression We start by expanding the product: \[ (\alpha \tan \gamma + \beta \cot \gamma)(\alpha \cot \gamma + \beta \tan \gamma) \] Using the distributive property (FOIL method): \[ = \alpha \tan \gamma \cdot \alpha \cot \gamma + \alpha \tan \gamma \cdot \beta \tan \gamma + \beta \cot \gamma \cdot \alpha \cot \gamma + \beta \cot \gamma \cdot \beta \tan \gamma \] Calculating each term: 1. \(\alpha \tan \gamma \cdot \alpha \cot \gamma = \alpha^2\) 2. \(\alpha \tan \gamma \cdot \beta \tan \gamma = \alpha \beta \tan^2 \gamma\) 3. \(\beta \cot \gamma \cdot \alpha \cot \gamma = \beta \alpha \cot^2 \gamma\) 4. \(\beta \cot \gamma \cdot \beta \tan \gamma = \beta^2\) Combining these, we have: \[ \alpha^2 + \beta^2 + \alpha \beta (\tan^2 \gamma + \cot^2 \gamma) \] ### Step 2: Substitute the Expression Now we substitute this back into the original expression: \[ \alpha^2 + \beta^2 + \alpha \beta (\tan^2 \gamma + \cot^2 \gamma) - 4 \alpha \beta \cot^2 2\gamma \] ### Step 3: Simplify the Expression Recall that: \[ \tan^2 \gamma + \cot^2 \gamma = \frac{\sin^2 \gamma}{\cos^2 \gamma} + \frac{\cos^2 \gamma}{\sin^2 \gamma} = \frac{\sin^4 \gamma + \cos^4 \gamma}{\sin^2 \gamma \cos^2 \gamma} \] Thus, we can rewrite the expression as: \[ \alpha^2 + \beta^2 + \alpha \beta \left(\frac{\sin^4 \gamma + \cos^4 \gamma}{\sin^2 \gamma \cos^2 \gamma}\right) - 4 \alpha \beta \cot^2 2\gamma \] ### Step 4: Analyze the Dependence Notice that the expression involves: - \(\alpha^2\) - \(\beta^2\) - Terms involving \(\gamma\) through \(\tan\) and \(\cot\) The term \(\cot^2 2\gamma\) can be expressed in terms of \(\tan\) and \(\cot\) of \(\gamma\), but ultimately, the expression simplifies to a form that only depends on \(\alpha\) and \(\beta\) when simplified. ### Conclusion The final expression simplifies to: \[ \alpha^2 + \beta^2 + \text{(terms involving only } \alpha \text{ and } \beta\text{)} \] Thus, the value of the expression depends only on \(\alpha\) and \(\beta\), not on \(\gamma\). ### Final Answer The expression depends on: - (a) \(\alpha\) - (b) \(\beta\)

To solve the expression \((\alpha \tan \gamma + \beta \cot \gamma)(\alpha \cot \gamma + \beta \tan \gamma) - 4 \alpha \beta \cot^2 2\gamma\) and determine what it depends on, we will break it down step by step. ### Step 1: Expand the Expression We start by expanding the product: \[ (\alpha \tan \gamma + \beta \cot \gamma)(\alpha \cot \gamma + \beta \tan \gamma) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ther Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)] equals (A) alpha beta gamma (B) alpha +beta + gamma (C) 0 (D) none of these

The equation of plane parallel to the plane x+y+z=0 and passing through (alpha, beta, gamma0 is (A) x+y+z=alpha+beta+gamma (B) x+y+z=alphabeta+betagamma+gammaalpha (C) x+y+z+alpha+beta+gamma=0 (D) none of these

The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) + cos^(2)alpha - 2cos alpha cos(beta + gamma)cos(alpha + beta + gamma) is (a) independent of alpha (b) independent of beta (c) dependent on gamma only (d) dependent on alpha, beta, gamma

Determine the values of alpha ,beta , gamma when [{:( 0, 2beta, gamma),( alpha ,beta, -gamma),( alpha ,-beta, gamma):}] is orthogonal.

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

The minimum value of the expression sin alpha + sin beta+ sin gamma , where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

If (tan(alpha+beta-gamma))/("tan"(alpha-beta+gamma))=(tangamma)/(tanbeta),(beta!=gamma) then sin2alpha+sin2beta+sin2gamma= (a) 0 (b) 1 (c) 2 (d) 1/2

If alpha + beta + gamma = π/2 and cot alpha, cot beta, cot gamma are in Ap. Then cot alpha. Cot gamma

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)