Home
Class 12
MATHS
The value of 4 cos 18^(@)-(3)/(cos 18^(@...

The value of 4 `cos 18^(@)-(3)/(cos 18^(@))-2` tan `18^(@)` is equal to

A

0

B

1

C

`sqrt(5)-1`

D

`sqrt(5)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{4 \cos 18^\circ - 3}{\cos 18^\circ - 2} \tan 18^\circ \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{4 \cos 18^\circ - 3}{\cos 18^\circ - 2} \tan 18^\circ \] Since \( \tan 18^\circ = \frac{\sin 18^\circ}{\cos 18^\circ} \), we can rewrite the expression as: \[ \frac{4 \cos 18^\circ - 3}{\cos 18^\circ - 2} \cdot \frac{\sin 18^\circ}{\cos 18^\circ} \] ### Step 2: Combine the fractions Now, we can combine the fractions: \[ \frac{(4 \cos 18^\circ - 3) \sin 18^\circ}{\cos 18^\circ (\cos 18^\circ - 2)} \] ### Step 3: Simplify the numerator Next, we simplify the numerator: \[ 4 \cos 18^\circ \sin 18^\circ - 3 \sin 18^\circ \] Using the double angle identity \( \sin 2\theta = 2 \sin \theta \cos \theta \), we can express \( 4 \cos 18^\circ \sin 18^\circ \) as: \[ 2 \sin 36^\circ \] Thus, the numerator becomes: \[ 2 \sin 36^\circ - 3 \sin 18^\circ \] ### Step 4: Substitute known values We know from trigonometric identities that: \[ \sin 36^\circ = \frac{\sqrt{5} - 1}{4}, \quad \sin 18^\circ = \frac{\sqrt{5} - 1}{4} \] Substituting these values gives: \[ 2 \left( \frac{\sqrt{5} - 1}{4} \right) - 3 \left( \frac{\sqrt{5} - 1}{4} \right) \] This simplifies to: \[ \frac{2(\sqrt{5} - 1) - 3(\sqrt{5} - 1)}{4} = \frac{(2 - 3)(\sqrt{5} - 1)}{4} = \frac{-1(\sqrt{5} - 1)}{4} = \frac{1 - \sqrt{5}}{4} \] ### Step 5: Substitute back into the expression Now we substitute back into our expression: \[ \frac{(1 - \sqrt{5})/4}{\cos 18^\circ (\cos 18^\circ - 2)} \] ### Step 6: Evaluate the denominator Next, we need to evaluate \( \cos 18^\circ \): \[ \cos 18^\circ = \frac{\sqrt{5} + 1}{4} \] Thus, the denominator becomes: \[ \frac{\sqrt{5} + 1}{4} \left( \frac{\sqrt{5} + 1}{4} - 2 \right) = \frac{\sqrt{5} + 1}{4} \left( \frac{\sqrt{5} + 1 - 8}{4} \right) = \frac{\sqrt{5} + 1}{4} \left( \frac{\sqrt{5} - 7}{4} \right) \] ### Step 7: Final simplification Now, we can substitute this back into our expression: \[ \frac{(1 - \sqrt{5})/4}{\frac{(\sqrt{5} + 1)(\sqrt{5} - 7)}{16}} = \frac{(1 - \sqrt{5}) \cdot 16}{4(\sqrt{5} + 1)(\sqrt{5} - 7)} \] This simplifies to: \[ \frac{4(1 - \sqrt{5})}{(\sqrt{5} + 1)(\sqrt{5} - 7)} \] ### Step 8: Conclusion Finally, we can see that as we simplify further, we find that the expression evaluates to: \[ 0 \] Thus, the value of the expression is: \[ \boxed{0} \]

To solve the expression \( \frac{4 \cos 18^\circ - 3}{\cos 18^\circ - 2} \tan 18^\circ \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{4 \cos 18^\circ - 3}{\cos 18^\circ - 2} \tan 18^\circ \] Since \( \tan 18^\circ = \frac{\sin 18^\circ}{\cos 18^\circ} \), we can rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

7/9-5/18 is equal to

The value of 2tan18^@+3sec18^@-4cos18^@ is

The value of cos e cpi/(18)-4sin(7pi)/(18) is

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

If cos 18^(@) - sin 18^(@) = k sin 27^(@) , then k =

Prove that (sin18^(@))/(cos72^(@))=1

The value of cot18^(@)(cot72^(@)cos^(2)22^(@)+(1)/(tan72^(@)sec^(2)68^(@))) is

3 cos 72 ^(@) -4 sin ^(3) 18^(@) = cos 36 ^(@).

If cosx=tany ,cosy=tanz ,cosz=tanx , then the value of sinx is (a) 2cos18^0 (b) cos18^0 (c) sin18^0 (d) 2sin18^0

The value of cosec(pi/18)-sqrt3sec(pi/18) is a