Home
Class 12
MATHS
The value of (cot84^(@)cot48^(@))/(cot66...

The value of `(cot84^(@)cot48^(@))/(cot66^(@)cot78^(@))` is equal to

A

1

B

0

C

`sqrt(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\cot 84^\circ \cot 48^\circ}{\cot 66^\circ \cot 78^\circ}\), we can follow these steps: ### Step 1: Rewrite cotangent in terms of sine and cosine We know that \(\cot x = \frac{\cos x}{\sin x}\). Therefore, we can rewrite the expression as: \[ \frac{\cot 84^\circ \cot 48^\circ}{\cot 66^\circ \cot 78^\circ} = \frac{\frac{\cos 84^\circ}{\sin 84^\circ} \cdot \frac{\cos 48^\circ}{\sin 48^\circ}}{\frac{\cos 66^\circ}{\sin 66^\circ} \cdot \frac{\cos 78^\circ}{\sin 78^\circ}} \] ### Step 2: Combine the fractions This can be simplified to: \[ \frac{\cos 84^\circ \cos 48^\circ \sin 66^\circ \sin 78^\circ}{\sin 84^\circ \sin 48^\circ \cos 66^\circ \cos 78^\circ} \] ### Step 3: Use the sine and cosine double angle identities We can use the identities \(2 \sin A \cos B = \sin(A + B) + \sin(A - B)\) and \(2 \cos A \sin B = \sin(A + B) - \sin(A - B)\) to simplify the expression further. ### Step 4: Apply the identities We will apply the identities to the numerator and denominator: 1. For \(2 \cos 84^\circ \sin 66^\circ\): \[ 2 \cos 84^\circ \sin 66^\circ = \sin(84 + 66) + \sin(84 - 66) = \sin 150^\circ + \sin 18^\circ \] 2. For \(2 \sin 78^\circ \cos 48^\circ\): \[ 2 \sin 78^\circ \cos 48^\circ = \sin(78 + 48) + \sin(78 - 48) = \sin 126^\circ + \sin 30^\circ \] ### Step 5: Substitute back into the expression Now substituting back, we have: \[ \frac{\sin 150^\circ + \sin 18^\circ}{\sin 84^\circ \sin 48^\circ \cos 66^\circ \cos 78^\circ} \] ### Step 6: Evaluate the sine values We know: - \(\sin 150^\circ = \sin 30^\circ = \frac{1}{2}\) - \(\sin 18^\circ\) is a known value, approximately \(0.309\) - \(\sin 30^\circ = \frac{1}{2}\) ### Step 7: Substitute known values Now substituting these values into the expression: \[ \frac{\frac{1}{2} + \sin 18^\circ}{\frac{1}{2} + \sin 18^\circ} = 1 \] ### Final Answer Thus, the value of \(\frac{\cot 84^\circ \cot 48^\circ}{\cot 66^\circ \cot 78^\circ}\) is equal to \(1\). ---

To solve the expression \(\frac{\cot 84^\circ \cot 48^\circ}{\cot 66^\circ \cot 78^\circ}\), we can follow these steps: ### Step 1: Rewrite cotangent in terms of sine and cosine We know that \(\cot x = \frac{\cos x}{\sin x}\). Therefore, we can rewrite the expression as: \[ \frac{\cot 84^\circ \cot 48^\circ}{\cot 66^\circ \cot 78^\circ} = \frac{\frac{\cos 84^\circ}{\sin 84^\circ} \cdot \frac{\cos 48^\circ}{\sin 48^\circ}}{\frac{\cos 66^\circ}{\sin 66^\circ} \cdot \frac{\cos 78^\circ}{\sin 78^\circ}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)(-2) is equal to

The value of cot36^(@)cot72^(@), is

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

The value of (3+cot76^@cot16^@)/(cot76^@+cot16^@) is

Find the value of (tan 9^(@)+cot9^(@))/(tan27^(@)+cot27^(@)) .

The value of 1+cot ^2A is

The value of sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]} is equal to (x gt0)

The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :