Home
Class 12
MATHS
In a Delta ABC, 2 sinA cos B + 2 sin B c...

In a `Delta ABC`, `2 sinA cos B + 2 sin B cos C + 2 sin C cos A` = `sin A + sin B + sin C,` then `Delta ABC` is (a) Isoceles (b) Right Angled (c) Acute (d) None of these

A

isosceles

B

right angled

C

acute angled

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the triangle ABC: \[ 2 \sin A \cos B + 2 \sin B \cos C + 2 \sin C \cos A = \sin A + \sin B + \sin C \] We will manipulate this equation step by step. ### Step 1: Use the identity for sine and cosine We know the identity: \[ \sin A \cos B = \frac{1}{2} (\sin(A + B) + \sin(A - B)) \] Using this identity, we can rewrite each term on the left side of the equation. ### Step 2: Rewrite the equation Applying the identity, we have: \[ \begin{align*} 2 \sin A \cos B & = \sin(A + B) + \sin(A - B) \\ 2 \sin B \cos C & = \sin(B + C) + \sin(B - C) \\ 2 \sin C \cos A & = \sin(C + A) + \sin(C - A) \end{align*} \] Thus, the left side becomes: \[ \sin(A + B) + \sin(A - B) + \sin(B + C) + \sin(B - C) + \sin(C + A) + \sin(C - A) \] ### Step 3: Substitute angles in terms of π In triangle ABC, we know: \[ A + B + C = \pi \] Thus, we can express: \[ \begin{align*} A + B & = \pi - C \\ B + C & = \pi - A \\ C + A & = \pi - B \end{align*} \] ### Step 4: Substitute back into the equation Substituting these into our equation gives: \[ \sin(\pi - C) + \sin(A - B) + \sin(\pi - A) + \sin(B - C) + \sin(\pi - B) + \sin(C - A) \] Using the property \(\sin(\pi - x) = \sin x\), we simplify: \[ \sin C + \sin(A - B) + \sin A + \sin(B - C) + \sin B + \sin(C - A) \] ### Step 5: Combine terms Now we have: \[ \sin A + \sin B + \sin C + \sin(A - B) + \sin(B - C) + \sin(C - A) = \sin A + \sin B + \sin C \] This implies: \[ \sin(A - B) + \sin(B - C) + \sin(C - A) = 0 \] ### Step 6: Analyze the sine terms The equation \(\sin(A - B) + \sin(B - C) + \sin(C - A) = 0\) suggests that at least one of the sine terms must be zero. This leads us to conclude that: 1. \(A = B\) 2. \(B = C\) 3. \(C = A\) ### Conclusion Since any two angles are equal, triangle ABC is isosceles. Thus, the answer is: **(a) Isosceles**

To solve the problem, we start with the equation given in the triangle ABC: \[ 2 \sin A \cos B + 2 \sin B \cos C + 2 \sin C \cos A = \sin A + \sin B + \sin C \] We will manipulate this equation step by step. ### Step 1: Use the identity for sine and cosine We know the identity: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

In Delta ABC, (sin A (a - b cos C))/(sin C (c -b cos A))=

In a Delta ABC, show that 2R^(2) sin A sin B sin C=Delta.

In any DeltaABC , prove that : a cos A + b cos B + c cos C = 2a sin B sin C

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In Delta ABC , angle B = 90^(@) find the values of : sin A cos C + cos A sin C

In Delta ABC , angle B = 90^(@) find the values of : cos A cos C -sin A sin C

In a Delta A B C , if cos A=( sin B)/(2sin C), then show that c=adot