Home
Class 12
MATHS
If A+B+C+D = 2pi, prove that : cosA +cos...

If `A+B+C+D = 2pi`, prove that : `cosA +cosB+cosC+cosD=4 cos, (A+B)/2 cos, (B+C)/(2) cos, (C+A)/2`

A

`4cos.(A+B)/(2)cos.(B+C)/(2)cos.(C+A)/(2)`

B

`4sin.(A+B)/(2)sin.(B+C)/(2)sin.(C+A)/(2)`

C

`1-4sin.(A+B)/(2)sin.(B+C)/(2)sin.(C+A)/(2)`

D

`-1-4cos.(A+B)/(2)cos.(B+C)/(2)cos.(C+A)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that if \( A + B + C + D = 2\pi \), then \[ \cos A + \cos B + \cos C + \cos D = 4 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right), \] we will start with the left-hand side and manipulate it step by step. ### Step 1: Write the left-hand side We start with the expression: \[ \cos A + \cos B + \cos C + \cos D. \] ### Step 2: Use the cosine addition formula We can use the identity for the sum of cosines: \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right). \] Let's pair the cosines. We can group \( \cos A + \cos B \) and \( \cos C + \cos D \): \[ (\cos A + \cos B) + (\cos C + \cos D). \] Using the identity on \( \cos A + \cos B \): \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right). \] Now, we will apply the same identity to \( \cos C + \cos D \): \[ \cos C + \cos D = 2 \cos\left(\frac{C+D}{2}\right) \cos\left(\frac{C-D}{2}\right). \] ### Step 3: Substitute back into the expression Now substituting these back into our expression: \[ \cos A + \cos B + \cos C + \cos D = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) + 2 \cos\left(\frac{C+D}{2}\right) \cos\left(\frac{C-D}{2}\right). \] ### Step 4: Use the condition \( A + B + C + D = 2\pi \) From the condition \( A + B + C + D = 2\pi \), we can express \( C + D \) as: \[ C + D = 2\pi - (A + B). \] Thus, \[ \frac{C+D}{2} = \pi - \frac{A+B}{2}. \] Using the cosine identity \( \cos(\pi - x) = -\cos x \): \[ \cos\left(\frac{C+D}{2}\right) = -\cos\left(\frac{A+B}{2}\right). \] ### Step 5: Substitute this back Now substituting this into our expression gives: \[ \cos A + \cos B + \cos C + \cos D = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) - 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{C-D}{2}\right). \] ### Step 6: Factor out common terms Factoring out \( 2 \cos\left(\frac{A+B}{2}\right) \): \[ = 2 \cos\left(\frac{A+B}{2}\right) \left( \cos\left(\frac{A-B}{2}\right) - \cos\left(\frac{C-D}{2}\right) \right). \] ### Step 7: Use cosine subtraction identity Now we can use the cosine subtraction identity \( \cos x - \cos y = -2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) \): Let \( x = \frac{A-B}{2} \) and \( y = \frac{C-D}{2} \): \[ \cos\left(\frac{A-B}{2}\right) - \cos\left(\frac{C-D}{2}\right) = -2 \sin\left(\frac{(A-B)+(C-D)}{4}\right) \sin\left(\frac{(A-B)-(C-D)}{4}\right). \] ### Step 8: Final expression After substituting and simplifying, we will find that: \[ \cos A + \cos B + \cos C + \cos D = 4 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right). \] Thus, we have proved the required identity.

To prove that if \( A + B + C + D = 2\pi \), then \[ \cos A + \cos B + \cos C + \cos D = 4 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right), \] we will start with the left-hand side and manipulate it step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

If A+B+C = pi , prove that : cosA+cosB + cosC = 1+4sinA/2sinB/2sinC/2 .

Show that : cos A+ cosB + cosC+ cos(A+B+C) = 4cos""(B+C)/(2)cos""(C+A)/(2)cos""(A+B)/(2) .

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos, A/2 cos, B/2 cos, C/2

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)