Home
Class 12
MATHS
The value of cos(-89^(@))+cos(-87^(@))+c...

The value of `cos(-89^(@))+cos(-87^(@))+cos(-85^(@))+…+cos(85^(@))+cos(87^(@))+cos(89^(@))` is equal to

A

`cosec 1^(@)`

B

`sec 1^(@)`

C

`2 sec 1^(@)`

D

`2 cosec 1^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \cos(-89^\circ) + \cos(-87^\circ) + \cos(-85^\circ) + \ldots + \cos(85^\circ) + \cos(87^\circ) + \cos(89^\circ) \), we can follow these steps: ### Step 1: Utilize the property of cosine We know that \( \cos(-\theta) = \cos(\theta) \). Therefore, we can rewrite the expression as: \[ \cos(89^\circ) + \cos(87^\circ) + \cos(85^\circ) + \ldots + \cos(85^\circ) + \cos(87^\circ) + \cos(89^\circ) \] This means each negative angle will have a corresponding positive angle, and we can pair them up. ### Step 2: Recognize the symmetry The series can be grouped into pairs: \[ 2(\cos(89^\circ) + \cos(87^\circ) + \cos(85^\circ) + \ldots + \cos(1^\circ)) \] This is because \( \cos(89^\circ) \) pairs with \( \cos(-89^\circ) \), \( \cos(87^\circ) \) pairs with \( \cos(-87^\circ) \), and so on. ### Step 3: Identify the series The series now consists of cosines of odd degrees from \( 1^\circ \) to \( 89^\circ \). The number of terms in this series can be calculated as follows: - The odd numbers from \( 1 \) to \( 89 \) can be expressed as \( 1, 3, 5, \ldots, 89 \). - This is an arithmetic series where the first term \( a = 1 \), the last term \( l = 89 \), and the common difference \( d = 2 \). ### Step 4: Calculate the number of terms The number of terms \( n \) in the series can be calculated using the formula for the \( n \)-th term of an arithmetic series: \[ l = a + (n-1)d \implies 89 = 1 + (n-1) \cdot 2 \] Solving for \( n \): \[ 89 - 1 = (n-1) \cdot 2 \implies 88 = (n-1) \cdot 2 \implies n-1 = 44 \implies n = 45 \] ### Step 5: Apply the sum formula for cosines The sum of cosines can be calculated using the formula: \[ \sum_{k=0}^{n-1} \cos(a + kd) = \frac{\sin\left(\frac{nd}{2}\right) \cdot \cos\left(a + \frac{(n-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] In our case: - \( a = 1^\circ \) - \( d = 2^\circ \) - \( n = 45 \) ### Step 6: Substitute into the formula Substituting the values into the formula: \[ \sum_{k=0}^{44} \cos(1^\circ + 2k^\circ) = \frac{\sin\left(\frac{45 \cdot 2^\circ}{2}\right) \cdot \cos\left(1^\circ + \frac{(45-1) \cdot 2^\circ}{2}\right)}{\sin\left(\frac{2^\circ}{2}\right)} \] This simplifies to: \[ = \frac{\sin(45^\circ) \cdot \cos(44^\circ)}{\sin(1^\circ)} \] ### Step 7: Final calculation Since \( \sin(45^\circ) = \frac{\sqrt{2}}{2} \): \[ = \frac{\frac{\sqrt{2}}{2} \cdot \cos(44^\circ)}{\sin(1^\circ)} \] Thus, the total value of the original expression is: \[ 2 \cdot \frac{\frac{\sqrt{2}}{2} \cdot \cos(44^\circ)}{\sin(1^\circ)} = \frac{\sqrt{2} \cdot \cos(44^\circ)}{\sin(1^\circ)} \] ### Final Answer The value of \( \cos(-89^\circ) + \cos(-87^\circ) + \ldots + \cos(89^\circ) \) is: \[ \frac{\sqrt{2} \cdot \cos(44^\circ)}{\sin(1^\circ)} \]

To find the value of the expression \( \cos(-89^\circ) + \cos(-87^\circ) + \cos(-85^\circ) + \ldots + \cos(85^\circ) + \cos(87^\circ) + \cos(89^\circ) \), we can follow these steps: ### Step 1: Utilize the property of cosine We know that \( \cos(-\theta) = \cos(\theta) \). Therefore, we can rewrite the expression as: \[ \cos(89^\circ) + \cos(87^\circ) + \cos(85^\circ) + \ldots + \cos(85^\circ) + \cos(87^\circ) + \cos(89^\circ) \] This means each negative angle will have a corresponding positive angle, and we can pair them up. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(-1)(cos10) is

cos 1^(@) + cos2^(@) + cos 3^(@) + ….+cos 180^(@) is equal to

The value of cos 65^(@)cos 55^(@)cos5^(@) is

The value of cos^(-1)(cos (14pi)/(3)) is

The value of (sin22^(@)cos8^(@)+cos158^(@)cos98^(@))/(sin23^(@)cos7^(@)+cos157^(@)cos97^(@))

The value of cos^(-1)(cos'(3pi)/(2)) is

The value of cos (2Cos^-1 0.8) is

4 cos 12 ^(@) cos 48^(@) cos 72^(@) = cos 36 ^(@)

The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), is

The value of cos0 cos1^(@)cos2^(@) ……………. cos179^(@) cos180^(@) is :