Home
Class 12
MATHS
In a triangle ABc , if r^2cot(A/2) cot(...

In a triangle ABc , if `r^2cot(A/2) cot(B/2) cot(C/2)=`

A

acute angled

B

obtuse angled

C

right angled

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( r^2 \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) \) in triangle ABC. Let's break it down step by step. ### Step 1: Write the formulas for cotangent of half angles In a triangle, the cotangent of half angles can be expressed as: \[ \cot\left(\frac{A}{2}\right) = \frac{s(s-a)}{\Delta}, \quad \cot\left(\frac{B}{2}\right) = \frac{s(s-b)}{\Delta}, \quad \cot\left(\frac{C}{2}\right) = \frac{s(s-c)}{\Delta} \] where \( s \) is the semi-perimeter of the triangle, \( s = \frac{a+b+c}{2} \), and \( \Delta \) is the area of the triangle. ### Step 2: Substitute the cotangent values into the expression Now we substitute these values into the expression: \[ r^2 \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) = r^2 \left(\frac{s(s-a)}{\Delta}\right) \left(\frac{s(s-b)}{\Delta}\right) \left(\frac{s(s-c)}{\Delta}\right) \] ### Step 3: Simplify the expression This simplifies to: \[ = r^2 \cdot \frac{s^3 (s-a)(s-b)(s-c)}{\Delta^3} \] ### Step 4: Use the formula for the area of the triangle We know that: \[ s(s-a)(s-b)(s-c) = \Delta^2 \] Thus, \[ r^2 \cdot \frac{s^3 \cdot \Delta^2}{\Delta^3} = r^2 \cdot \frac{s^3}{\Delta} \] ### Step 5: Substitute the value of \( r \) The circumradius \( R \) is given by the formula: \[ R = \frac{\Delta}{s} \] So, \[ R^2 = \frac{\Delta^2}{s^2} \] Substituting this into our expression gives: \[ = \frac{\Delta^2}{s^2} \cdot \frac{s^3}{\Delta} = \frac{s \Delta}{1} \] ### Step 6: Final simplification Thus, we find that: \[ r^2 \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) = \Delta \] ### Conclusion The final value is: \[ \boxed{\Delta} \]

To solve the problem, we need to find the value of \( r^2 \cot\left(\frac{A}{2}\right) \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) \) in triangle ABC. Let's break it down step by step. ### Step 1: Write the formulas for cotangent of half angles In a triangle, the cotangent of half angles can be expressed as: \[ \cot\left(\frac{A}{2}\right) = \frac{s(s-a)}{\Delta}, \quad \cot\left(\frac{B}{2}\right) = \frac{s(s-b)}{\Delta}, \quad \cot\left(\frac{C}{2}\right) = \frac{s(s-c)}{\Delta} \] where \( s \) is the semi-perimeter of the triangle, \( s = \frac{a+b+c}{2} \), and \( \Delta \) is the area of the triangle. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos
  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC if cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a and cot(C/2)cot(A/2)=b then 1/(s-a)+1/(s-b)+1/(s-c)=

In a triangle ABC, prove that (cot(A/2)+cot(B/2)+cot(C/2))/(cotA+cotB+cot(C))=((a+b+c)^2)/(a^2+b^2+c^2)

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

In triangle ABC, if |[1,1,1], [cot (A/2), cot(B/2), cot(C/2)], [tan(B/2)+tan(C/2), tan(C/2)+ tan(A/2), tan(A/2)+ tan(B/2)]| then the triangle must be (A) Equilateral (B) Isoceless (C) Right Angle (D) none of these

In a triangle ABC, prove that the ratio of the area of the incircle to that of the triangle is pi:cot(A/2) cot(B/2) cot(C/2)

In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

If in a triangle ABC ,b +c=4a then cot(B/2)cot(C/2) is equal to

In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P. , then

If three sides a,b,c of a triangle ABC are in arithmetic progression, then the value of cot(A/2), cot(B/2), cot(C/2) are in

In any DeltaABC , prove that cot (A/2) + cot (B/2) + cot (C/2) = (a+b+c)/(b+c-a) cot (A/2)