Home
Class 12
MATHS
If log10(sin x) + log10(tany)+ log10 2=0...

If `log_10(sin x) + log_10(tany)+ log_10 2=0` and `coty= 2sqrt3 cos x,` then ordered pair `(x, y)` satisfying the equations simultaneously is(are) (A) `(pi/3 ,pi/3)` (B) `(pi/3 ,pi/6)` (C) `(pi/6 ,(2pi)/3)` (D) `(pi/3 , (7pi)/6)`

A

0

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
C

`log_(10)(sin x)+log_(10)(tan y) + log_(10)2=0`
`therefore 2 sin x tan y = 1` ….(1)
where sin x gt 0, tan y gt 0
`cot y=2sqrt(3)cos x` ….(2)
From (1) and (2), `2 sin x = 2sqrt(3)cos x`
`therefore tan x = sqrt(3)`
`rArr x = 2n pi + (pi)/(3), n in I` (as sin x gt 0)
From (1), `tan y =(1)/(sqrt(3)rArr y=n pi + (pi)/(6), n in I`
Hence, ordered pairs are `(pi//3, pi//6), (pi//3,7pi//6),(7pi//3,pi//6), (7pi//3,7pi//6)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The least positive solution of cot(pi/(3sqrt3) sin2x)=sqrt3 lie (a) (0,pi/6) (b) (pi/9,pi/6) (c) (pi/12,pi/9) (d) (pi/3,pi/2)

cos^-1 {-sin((5pi)/6)}= (A) - (5pi)/6 (B) (5pi)/6 (C) (2pi)/3 (D) -(2pi)/3

cos^(-1)(cos((7pi)/6)) is equal to (A) (7pi)/6 (B) (5pi)/6 (C) pi/3 (D) pi/6

In which of the following sets the inequality sin^6x+cos^6x >5/8 holds good? (a) (-pi/3,pi/8) (b) ((3pi)/8,(5pi)/8) (c) (pi/4,(3pi)/4) (d) ((7pi)/8,(9pi)/8)

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

The values of x_1 between 0 and 2pi , satisfying the equation cos3x+cos2x=sin(3x)/2+sinx/2 are pi/7 (b) (5pi)/7 (c) (9pi)/7 (d) (13pi)/7

If x in[0,6 pi],y in[0,6 pi] then the number of ordered pair (x,y) which satisfy the equation sin^(-1)sin x+cos^(-1)cos y=(3 pi)/(2) are

The solution(s) of the equation cos2x sin6x=cos3x sin5x in the interval [0,pi] is/are pi/6 (b) pi/2 (c) (2pi)/3 (d) (5pi)/6

The value of sin^(-1)(cos(33pi)/5) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5