Home
Class 12
MATHS
Solve : If (1)/(cos theta)+(1)/(cos 3the...

Solve : If `(1)/(cos theta)+(1)/(cos 3theta)=(1)/(cos 5theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{\cos \theta} + \frac{1}{\cos 3\theta} = \frac{1}{\cos 5\theta}, \] we will follow these steps: ### Step 1: Take LCM and Cross Multiply We start by taking the least common multiple (LCM) of the fractions on the left-hand side: \[ \frac{\cos 3\theta + \cos \theta}{\cos \theta \cos 3\theta} = \frac{1}{\cos 5\theta}. \] Cross multiplying gives us: \[ (\cos 3\theta + \cos \theta) \cos 5\theta = \cos \theta \cos 3\theta. \] ### Step 2: Expand the Equation Now, we can expand the equation: \[ \cos 3\theta \cos 5\theta + \cos \theta \cos 5\theta = \cos \theta \cos 3\theta. \] ### Step 3: Rearranging the Terms Rearranging the equation gives us: \[ \cos 3\theta \cos 5\theta + \cos \theta \cos 5\theta - \cos \theta \cos 3\theta = 0. \] ### Step 4: Factor Out Common Terms We can factor out \(\cos \theta\): \[ \cos 5\theta (\cos 3\theta + \cos \theta) - \cos \theta \cos 3\theta = 0. \] ### Step 5: Apply the Cosine Addition Formula Using the identity \(2 \cos A \cos B = \cos(A + B) + \cos(A - B)\), we can rewrite the terms: \[ 2 \cos 3\theta \cos 5\theta + 2 \cos \theta \cos 5\theta - 2 \cos \theta \cos 3\theta = 0. \] ### Step 6: Simplifying the Equation This simplifies to: \[ \cos(8\theta) + \cos(2\theta) = 0. \] ### Step 7: Using the Cosine Sum Formula Using the cosine sum formula: \[ \cos A + \cos B = 0 \Rightarrow 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = 0. \] Setting \(A = 8\theta\) and \(B = 2\theta\): \[ 2 \cos(5\theta) \cos(3\theta) = 0. \] ### Step 8: Setting Each Factor to Zero This gives us two cases: 1. \(\cos(5\theta) = 0\) 2. \(\cos(3\theta) = 0\) ### Step 9: Solving Each Case For \(\cos(5\theta) = 0\): \[ 5\theta = \frac{(2n + 1)\pi}{2} \Rightarrow \theta = \frac{(2n + 1)\pi}{10}, \quad n \in \mathbb{Z}. \] For \(\cos(3\theta) = 0\): \[ 3\theta = \frac{(2m + 1)\pi}{2} \Rightarrow \theta = \frac{(2m + 1)\pi}{6}, \quad m \in \mathbb{Z}. \] ### Final Solution Thus, the solutions for \(\theta\) are: \[ \theta = \frac{(2n + 1)\pi}{10} \quad \text{and} \quad \theta = \frac{(2m + 1)\pi}{6}. \]

To solve the equation \[ \frac{1}{\cos \theta} + \frac{1}{\cos 3\theta} = \frac{1}{\cos 5\theta}, \] we will follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(sin theta)+(1)/(cos theta)=

Prove that : (2 cos 2^n theta + 1)/(2 cos theta +1) = (2 cos theta -1) (2 cos 2theta -1) (2 cos 2^2 theta -1) … (2 cos 2^(n-1) theta -1)

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)

The minimum value of determinant Delta=|{:(1,cos theta,1),(-cos theta , 1,cos theta),(-1,-cos theta, 2):}| AA theta in R is :

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

Solve: cos5theta=cos2theta

Prove that: (sin2theta)/(costheta cos3theta)+(sin4theta)/(cos3theta.cos5theta)+(sin6theta)/(cos5theta.cos7theta)+… to terms = 1/(2sintheta) [sec(2n+1)theta-sectheta]