Home
Class 12
MATHS
Solve : 3-2 cos theta -4 sin theta - cos...

Solve : `3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 - 2 \cos \theta - 4 \sin \theta - \cos 2\theta + \sin 2\theta = 0 \), we can follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: - \( \cos 2\theta = 1 - 2\sin^2 \theta \) - \( \sin 2\theta = 2 \sin \theta \cos \theta \) Substituting these identities into the equation gives: \[ 3 - 2 \cos \theta - 4 \sin \theta - (1 - 2 \sin^2 \theta) + 2 \sin \theta \cos \theta = 0 \] ### Step 2: Simplify the equation Now, simplify the equation: \[ 3 - 2 \cos \theta - 4 \sin \theta - 1 + 2 \sin^2 \theta + 2 \sin \theta \cos \theta = 0 \] This simplifies to: \[ 2 + 2 \sin^2 \theta - 2 \cos \theta - 4 \sin \theta + 2 \sin \theta \cos \theta = 0 \] ### Step 3: Factor out common terms We can factor out 2 from the entire equation: \[ 2(\sin^2 \theta - 2 \sin \theta + \sin \theta \cos \theta - \cos \theta + 1) = 0 \] This implies: \[ \sin^2 \theta - 2 \sin \theta + \sin \theta \cos \theta - \cos \theta + 1 = 0 \] ### Step 4: Rearranging the equation Rearranging gives: \[ \sin^2 \theta + \sin \theta \cos \theta - 2 \sin \theta - \cos \theta + 1 = 0 \] ### Step 5: Solve for \(\sin \theta\) and \(\cos \theta\) We can treat this as a quadratic in \(\sin \theta\): Let \(x = \sin \theta\), then we can rewrite the equation as: \[ x^2 + x \cos \theta - 2x - \cos \theta + 1 = 0 \] ### Step 6: Use the quadratic formula Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 1\), \(b = \cos \theta - 2\), and \(c = -\cos \theta + 1\): \[ x = \frac{-(\cos \theta - 2) \pm \sqrt{(\cos \theta - 2)^2 - 4(1)(-\cos \theta + 1)}}{2(1)} \] ### Step 7: Solve for \(\theta\) Now we can solve for \(\theta\) using the values of \(x\) obtained from the quadratic equation. ### Step 8: Finding specific solutions 1. Set \( \sin \theta = 1 \): \[ \theta = \frac{\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] 2. Set \( \sin \theta + \cos \theta = 1 \): \[ \sin \theta = 1 - \cos \theta \] Substitute into the Pythagorean identity: \[ (1 - \cos \theta)^2 + \cos^2 \theta = 1 \] This leads to further simplifications and solutions. ### Final Solutions Thus, the solutions for \(\theta\) are: \[ \theta = \frac{\pi}{2} + 2n\pi \quad \text{and other solutions from the quadratic.} \]

To solve the equation \( 3 - 2 \cos \theta - 4 \sin \theta - \cos 2\theta + \sin 2\theta = 0 \), we can follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: - \( \cos 2\theta = 1 - 2\sin^2 \theta \) - \( \sin 2\theta = 2 \sin \theta \cos \theta \) Substituting these identities into the equation gives: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the general vlaue. 3-2cos theta -4sin theta - cos 2 theta + sin 2 theta =0

Solve 2 cos^(2) theta = 3 sin theta

Solve 2 cos^(2) theta +3 sin theta=0 .

Solve 3 cos 2 theta-sin theta=2

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

Prove that : (cos 4theta + cos 3theta + cos 2theta)/(sin 4theta + sin 3theta + sin 2theta) = cot 3theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Solve cos 4 theta+ sin 5 theta=2 .

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.