Home
Class 12
MATHS
Find the general solution of the trignom...

Find the general solution of the trignometric equation `3^(1/2+log_(3)(cosx+sinx))-2^(log_(2)(cosx-sinx))=sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
`x=2n pi+(3pi)/(4),2n pi+(pi)/(12),n in Z`

`3^(((1)/(2)+log_(3)(cos x + sin x)))-2^(log_(2)(cos x - sin x)=sqrt(2))`
or `sqrt(3)(cos x + sin x) - (cos x - sin x) = sqrt(2)`
or `sqrt(3) cos x + sqrt(3) sin x - cos x + sin x = sqrt(2)`
or `(sqrt(3)+1)sin x + (sqrt(3)-1)cos x = (2sqrt(2))/(2)/(2)`
or `((sqrt(3)+1)/(2sqrt(2)))sin x + ((sqrt(3)-1)/(2sqrt(2)))cos x = (1)/(2)`
or `sin (x + (5pi)/(12))=(1)/(2)`
or `x + (5pi)/(12)=2n pi pm (pi)/(3), n in Z`
or `x = 2n pi pm(pi)/(3)-(5pi)/(12)`
or `x = 2n pi +(3pi)/(4), 2n pi + (pi)/(12), n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the inequality log_(1//2) sinx gt log_(1//2) cosx is

Write the number of solutions of the equation 2sinx-3cosx=7.

Find intcos2x*log((cosx+sinx)/(cosx-sinx))dx

The solution of the equation log _( cosx ^(2)) (3-2x) lt log _( cos x ^(2)) (2x -1) is:

The most general solution of the equation sqrt3cosx +sinx = sqrt2 is :

Find the number of solution of log_(1/2) |sinx| = 2 - log_(1/2) |cosx|, x in [0, 2pi]

Find the number of solution of log_(1/2) |sinx| = 2 - log_(1/2) |cosx|, x in [0, 2pi]

Solve the following equations. (xi) log_(sqrt2sinx)(1+cosx)=2

Find the solutions of the equation, (log)_(sqrt(2)sin"x")(1+cosx)=2, in the interval x [0,2pi]

Find the domain of the function, f(x)=log{log_(abs(sinx)){x^(2)-8x+23)-(3)/(log_(2)abs(sinx))} .