Home
Class 12
MATHS
Solve : cos 3x. Cos^(3)x+sin 3x.sin^(3)x...

Solve : `cos 3x. Cos^(3)x+sin 3x.sin^(3)x=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 3x \cdot \cos^3 x + \sin 3x \cdot \sin^3 x = 0 \), we can follow these steps: ### Step 1: Use Trigonometric Identities We know from trigonometric identities that: \[ \cos 3x = 4 \cos^3 x - 3 \cos x \] \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] Substituting these identities into the equation gives us: \[ (4 \cos^3 x - 3 \cos x) \cdot \cos^3 x + (3 \sin x - 4 \sin^3 x) \cdot \sin^3 x = 0 \] ### Step 2: Expand the Equation Expanding the equation: \[ 4 \cos^6 x - 3 \cos^4 x + 3 \sin^4 x - 4 \sin^6 x = 0 \] ### Step 3: Factor the Equation We can rearrange the equation: \[ 4 \cos^6 x - 4 \sin^6 x - 3 (\cos^4 x - \sin^4 x) = 0 \] Using the identity \( a^3 - b^3 = (a-b)(a^2 + ab + b^2) \): \[ 4 (\cos^2 x - \sin^2 x)(\cos^4 x + \cos^2 x \sin^2 x + \sin^4 x) - 3 (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) = 0 \] ### Step 4: Factor Out Common Terms Factoring out \( (\cos^2 x - \sin^2 x) \): \[ (\cos^2 x - \sin^2 x) \left(4(\cos^4 x + \cos^2 x \sin^2 x + \sin^4 x) - 3\right) = 0 \] ### Step 5: Solve Each Factor 1. **First Factor**: \( \cos^2 x - \sin^2 x = 0 \) \[ \Rightarrow \cos^2 x = \sin^2 x \Rightarrow \tan^2 x = 1 \Rightarrow \tan x = \pm 1 \] This gives: \[ x = n\pi + \frac{\pi}{4}, \quad n \in \mathbb{Z} \] 2. **Second Factor**: \( 4(\cos^4 x + \cos^2 x \sin^2 x + \sin^4 x) - 3 = 0 \) This factor is more complex, but we can analyze it further if necessary. ### Final Solution The solutions from the first factor are: \[ x = n\pi + \frac{\pi}{4} \quad \text{and} \quad x = n\pi - \frac{\pi}{4}, \quad n \in \mathbb{Z} \]

To solve the equation \( \cos 3x \cdot \cos^3 x + \sin 3x \cdot \sin^3 x = 0 \), we can follow these steps: ### Step 1: Use Trigonometric Identities We know from trigonometric identities that: \[ \cos 3x = 4 \cos^3 x - 3 \cos x \] \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve cos 7x= sin 3x

Solve : cos 3x + cos 2x = sin ""(3)/(2) x + sin "" (1)/(2) x, 0 lt x le pi.

Solve 7 cos^(2)x+sin x cos x-3=0 .

Solve for x 3sin^(2)x-(cosxsinx)-4cos^(2)x=0

Solve sin 3x + cos 2 x =-2

Solve the equation sin^3x.cos3x+cos^3x.sin3x+3/8=0

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0

Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

The number of solutions in the interval [0, pi] of the equation sin^(3)x cos 3x+sin 3xcos^(3)x=0 is equal to

( cos 4x + cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x) = cot3x