Home
Class 12
MATHS
Solve : 2sin(3x+(pi)/(4))=sqrt(1+8sin2x....

Solve : `2sin(3x+(pi)/(4))=sqrt(1+8sin2x.cos^(2)2x),x in (0,2pi)`

Text Solution

Verified by Experts

The correct Answer is:
`x=(pi)/(12),(17pi)/(12)`

`2sin(3x+(pi)/(4))=sqrt(1+8sin 2x.cos^(2)2x)`
`rArr 2((sin3x + cos 3x)/(sqrt(2)))=sqrt(1+8 sin 2x cos 2x cos 2x)`
`rArr sqrt(2)(sin 3x + cos 3x)^(2)=1+2(sin 6x + sin 2x)`
`rArr 2(1+sin 6x)=1+2 sin 6x + 2 sin 2x`
`rArr 2sin 2x=1`
`rArr sin 2x = 1//2 = sin pi//6`
or `2x=n//pi+(-1)^(n)pi//6, n in Z`
or `x=(n pi)/(2)+(-1)^(n)(pi)/(12), n in Z`
`therefore x=(6n+(-1)^(n))(pi)/(pi)/(12)`
`therefore x=(pi)/(12),(5pi)/(12),(13pi)/(12),(17pi)/(12)`
But for `x=(5pi)/(12)` and `(13pi)/(12), sin(3x+(pi)/(4))lt 0`
`therefore x =(pi)/(12), (17pi)/(12)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int _0^((pi)/(2)) (sin ^(2) x .cos ^(2) x )/((sin ^(3) x+ cos ^(3) x)^(2)) dx

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

Number of solutions of equation sin x.sqrt(8cos^(2)x)=1 in [0, 2pi] are

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Evaluate the following limits (i) lim_(x to (pi)/(2)) tan^(2) x [sqrt(2 sin^(2) x + 3 sin x + 4) - sqrt(sin^(2) x + 6 sin x + 2)] (ii) lim_(theta to 0) (sqrt(1 + sin 3 theta) -1)/(ln(1 + tan 2theta)) (iii) lim_(x to 0) (sqrt(1 + x) - ""^(3)sqrt(1 + x))/(x) (iv) lim_(phi to 0) (8)/(phi^(8)) (1 - cos (phi^(2))/(2) - cos (phi^(2))/(4) + cos (phi^(2))/(2). cos (phi^(2))/(4))

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

Solve sin^(-1) [sin((2x^(2) + 4)/(1 + x^(2)))] lt pi -3