Home
Class 12
MATHS
Solve : 2+tan x. cot\ (x)/(2)+cot x. tan...

Solve : `2+tan x. cot\ (x)/(2)+cot x. tan\ (x)/(2)=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 + \tan x \cdot \cot \frac{x}{2} + \cot x \cdot \tan \frac{x}{2} = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 2 + \tan x \cdot \cot \frac{x}{2} + \cot x \cdot \tan \frac{x}{2} = 0 \] ### Step 2: Substitute variables Let \( t = \tan x \cdot \cot \frac{x}{2} \). Then, we can rewrite the equation as: \[ 2 + t + \frac{1}{t} = 0 \] ### Step 3: Rearranging the equation We can rearrange the equation to isolate \( t \): \[ t + \frac{1}{t} = -2 \] ### Step 4: Multiply through by \( t \) Multiply both sides by \( t \) (assuming \( t \neq 0 \)): \[ t^2 + 1 = -2t \] Rearranging gives us: \[ t^2 + 2t + 1 = 0 \] ### Step 5: Factor the quadratic equation The equation can be factored as: \[ (t + 1)^2 = 0 \] Thus, we find: \[ t + 1 = 0 \quad \Rightarrow \quad t = -1 \] ### Step 6: Substitute back for \( t \) Recall that \( t = \tan x \cdot \cot \frac{x}{2} \). Therefore, we have: \[ \tan x \cdot \cot \frac{x}{2} = -1 \] ### Step 7: Rewrite in terms of sine and cosine Using the definitions of tangent and cotangent: \[ \tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \cot \frac{x}{2} = \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} \] Substituting these into our equation gives: \[ \frac{\sin x}{\cos x} \cdot \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} = -1 \] ### Step 8: Simplify the equation This simplifies to: \[ \frac{\sin x \cdot \cos \frac{x}{2}}{\cos x \cdot \sin \frac{x}{2}} = -1 \] Cross-multiplying gives: \[ \sin x \cdot \cos \frac{x}{2} = -\cos x \cdot \sin \frac{x}{2} \] ### Step 9: Use the double angle identity Using the identity \( \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} \), we can rewrite the left side: \[ 2 \sin \frac{x}{2} \cos \frac{x}{2} \cdot \cos \frac{x}{2} = -\cos x \cdot \sin \frac{x}{2} \] This simplifies to: \[ 2 \sin \frac{x}{2} \cos^2 \frac{x}{2} = -\cos x \cdot \sin \frac{x}{2} \] ### Step 10: Factor out \( \sin \frac{x}{2} \) Assuming \( \sin \frac{x}{2} \neq 0 \): \[ 2 \cos^2 \frac{x}{2} + \cos x = 0 \] ### Step 11: Substitute \( \cos x \) Using the identity \( \cos x = 2 \cos^2 \frac{x}{2} - 1 \): \[ 2 \cos^2 \frac{x}{2} + (2 \cos^2 \frac{x}{2} - 1) = 0 \] This simplifies to: \[ 4 \cos^2 \frac{x}{2} - 1 = 0 \] ### Step 12: Solve for \( \cos \frac{x}{2} \) Setting this equal to zero gives: \[ 4 \cos^2 \frac{x}{2} = 1 \quad \Rightarrow \quad \cos^2 \frac{x}{2} = \frac{1}{4} \] Taking the square root: \[ \cos \frac{x}{2} = \pm \frac{1}{2} \] ### Step 13: Find \( \frac{x}{2} \) The solutions for \( \frac{x}{2} \) are: \[ \frac{x}{2} = \frac{\pi}{3} + 2n\pi \quad \text{and} \quad \frac{x}{2} = \frac{5\pi}{3} + 2n\pi \] Thus, multiplying by 2 gives: \[ x = \frac{2\pi}{3} + 4n\pi \quad \text{and} \quad x = \frac{10\pi}{3} + 4n\pi \] ### Final Solution The general solutions for \( x \) are: \[ x = \frac{2\pi}{3} + 4n\pi \quad \text{and} \quad x = \frac{10\pi}{3} + 4n\pi \quad \text{where } n \in \mathbb{Z} \]

To solve the equation \( 2 + \tan x \cdot \cot \frac{x}{2} + \cot x \cdot \tan \frac{x}{2} = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 2 + \tan x \cdot \cot \frac{x}{2} + \cot x \cdot \tan \frac{x}{2} = 0 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the general solution of the equation, 2+tanx.cot(x/2) +cotx.tan(x/2)=0

Solve tan2x=-cot (x+pi/3)

Solve: tan 3x = cot 5x , ( 0 lt x lt 2pi).

Solve: tan2x−tan3x=0

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

Solve tan2x=-cot(x+pi/3)

Solve cot(x//2)-cosec (x//2)=cot x .

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

Solve 2 cot 2x -3 cot 3x = tan 2x .

Solve tan^(-1) x gt cot^(-1) x