Home
Class 12
MATHS
(sin3theta)/(2cos2theta+1)=(1)/(2) if (n...

`(sin3theta)/(2cos2theta+1)=(1)/(2)` if `(n in Z)`

A

`theta = 2n pi+(pi)/(6)`

B

`theta=2n pi-(pi)/(6)`

C

`theta=n pi+(-1)^(n)(pi)/(6)`

D

`theta-n pi-(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\sin 3\theta}{2\cos 2\theta + 1} = \frac{1}{2}\), we will follow these steps: ### Step 1: Rewrite the equation Start by cross-multiplying to eliminate the fraction: \[ \sin 3\theta = \frac{1}{2}(2\cos 2\theta + 1) \] ### Step 2: Use trigonometric identities Recall the identities: - \(\sin 3\theta = 3\sin\theta - 4\sin^3\theta\) - \(\cos 2\theta = 1 - 2\sin^2\theta\) Substituting these identities into the equation gives: \[ 3\sin\theta - 4\sin^3\theta = \frac{1}{2}(2(1 - 2\sin^2\theta) + 1) \] ### Step 3: Simplify the right side Simplifying the right side: \[ 3\sin\theta - 4\sin^3\theta = \frac{1}{2}(2 - 4\sin^2\theta + 1) = \frac{1}{2}(3 - 4\sin^2\theta) \] This simplifies to: \[ 3\sin\theta - 4\sin^3\theta = \frac{3}{2} - 2\sin^2\theta \] ### Step 4: Rearrange the equation Rearranging gives: \[ 3\sin\theta - 4\sin^3\theta + 2\sin^2\theta - \frac{3}{2} = 0 \] ### Step 5: Multiply through by 2 to eliminate the fraction Multiply the entire equation by 2: \[ 6\sin\theta - 8\sin^3\theta + 4\sin^2\theta - 3 = 0 \] ### Step 6: Rearrange into standard polynomial form Rearranging gives: \[ -8\sin^3\theta + 4\sin^2\theta + 6\sin\theta - 3 = 0 \] or \[ 8\sin^3\theta - 4\sin^2\theta - 6\sin\theta + 3 = 0 \] ### Step 7: Solve for \(\sin\theta\) Let \(x = \sin\theta\). The equation becomes: \[ 8x^3 - 4x^2 - 6x + 3 = 0 \] ### Step 8: Use the Rational Root Theorem or synthetic division Testing possible rational roots, we find that \(x = \frac{1}{2}\) is a root. ### Step 9: Factor the polynomial Using synthetic division, we can factor the polynomial: \[ 8x^3 - 4x^2 - 6x + 3 = (x - \frac{1}{2})(8x^2 + 4x - 6) \] ### Step 10: Solve the quadratic equation Now, solve \(8x^2 + 4x - 6 = 0\) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{16 + 192}}{16} = \frac{-4 \pm 14}{16} \] This gives: \[ x = \frac{10}{16} = \frac{5}{8} \quad \text{and} \quad x = \frac{-18}{16} = -\frac{9}{8} \quad (\text{not valid since } x \text{ must be in } [-1, 1]) \] ### Step 11: Find angles for valid solutions Thus, we have: \[ \sin\theta = \frac{1}{2} \quad \Rightarrow \quad \theta = n\pi + (-1)^n \frac{\pi}{6} \quad (n \in \mathbb{Z}) \] ### Final Answer The solutions for \(\theta\) are: \[ \theta = n\pi + (-1)^n \frac{\pi}{6}, \quad n \in \mathbb{Z} \]

To solve the equation \(\frac{\sin 3\theta}{2\cos 2\theta + 1} = \frac{1}{2}\), we will follow these steps: ### Step 1: Rewrite the equation Start by cross-multiplying to eliminate the fraction: \[ \sin 3\theta = \frac{1}{2}(2\cos 2\theta + 1) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If (3sin2theta)/(1-cos2theta)=1/2 and 0^(@)letheta180^(@) , then theta =

If (sin^4theta)/a+(cos^4theta)/b=1/(a+b) , prove that (sin^8theta)/(a^3)+(cos^4theta)/(b^3)=1/((a+b)^3) (sin^(4n)theta)/(a^(2n-1))+(cos^(4n)theta)/(b^(2n-1))=1/((a+b)^(2n-1)),n in N

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

Prove that: (a) (sin 2 theta)/(1+cos 2 theta)=tan theta (b) (1+sin 2 theta+cos 2theta)/(1+sin2 theta-cos 2 theta)=cot theta

Let f_(n)(theta)= 2 sin . (theta)/(2) sin. (3theta)/(2) + 2 sin.(theta)/(2) sin. (5theta)/(2) + 2sin. (theta)/(2) sin. (7 theta)/(2) + ... + 2 sin (2 n+1) (theta)/(2), n in N , then which of the following is/are correct ?

Prove that : (2 cos 2^n theta + 1)/(2 cos theta +1) = (2 cos theta -1) (2 cos 2theta -1) (2 cos 2^2 theta -1) … (2 cos 2^(n-1) theta -1)

One of the general solutions of 4sinthetasin2thetasin4theta=sin3theta is (3n+-1)pi/(12),AAn in Z (4n+-1)pi/9,AAn in Z (3n+-1)pi/(12),AAn in Z (3n+-1)pi/3,AAn in Z

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Prove that: a) (sin2theta)/(1+cos2theta) = tantheta b) (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cottheta

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )