Home
Class 12
MATHS
The general solution of the equation (1-...

The general solution of the equation `(1-sinx+....+(-1)^n sin^n x+...)/(1+sinx+......+sin^nx+...)= (1-cos2x)/(1+cos2x)` is

A

`(-1)^(n)(pi//6)+n pi`

B

`(-1)^(n)(pi//3)+n pi`

C

`(-1)^(n+1)(pi//6)+ n pi`

D

`(-1)^(n-1)(pi//3)+n pi,(n in 1)`

Text Solution

Verified by Experts

The correct Answer is:
A

The equation
`(1-sin x +…..+(-1)^(n)sin^(n)x +….)/(1+sin x + ….+ sin^(n) x +….)=(1-cos 2x)/(1+ cos 2x)`
`rArr (1)/(1+sin x)xx(1-sin x)/(1)=(2 sin^(2)x)/(2 cos^(2)x)`
`rArr (1-sin x)/(1+sin x)=(sin^(2)x)/(1-sin^(2)x)`
`rArr (1-sin x)^(2)=sin^(2)x`
`rArr sin x=(1)/(2)`
`rArr sin x = sin (pi//6)`
`rArr x = n pi+(-1)^(n)(pi//6), n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the equation sin^4x + cos^4x= sinx cos x is

The general solution of the equation sin^4x + cos^4x= sinx cos x is

The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

The general solution of the equation "sin" 2x+ 2 "sin" x+ 2 "cos" x + 1 = 0 is

The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) is

The general solution of the trigonometic equation "sin"x + "cos"x = 1 is given by

The number of solutions of the equation sinx. Sin2x. Sin3x = 1 in [0, 2pi]

The general solution of the equation sin^(2)x + cos^(2)3x =1 is equal to : (where n in I )

The number of solutions of the equation "sin" x = [1+"sin" x] + [1 -"cos" x] "in" [0, 2pi] is

General solution of the equation : sinx + cos x= min_(aepsilonR) {1,a^2-4a+6} is :