Home
Class 12
MATHS
The general solution of the equation, 2c...

The general solution of the equation, `2cot.(theta)/(2)=(1+cot theta)^(2)` is `(n in Z)`

A

`n pi+(-1)^(n)(pi)/(4)`

B

`n pi+(-1)^(n)(pi)/(6)`

C

`n pi+(-1)^(n)(pi)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{2 \cot \theta}{2} = (1 + \cot \theta)^2 \), we will follow these steps: ### Step 1: Simplify the left-hand side The left-hand side simplifies to: \[ \cot \theta = (1 + \cot \theta)^2 \] ### Step 2: Expand the right-hand side Now, we expand the right-hand side: \[ \cot \theta = 1 + 2 \cot \theta + \cot^2 \theta \] ### Step 3: Rearrange the equation Rearranging gives us: \[ \cot^2 \theta + 2 \cot \theta + 1 - \cot \theta = 0 \] This simplifies to: \[ \cot^2 \theta + \cot \theta + 1 = 0 \] ### Step 4: Solve the quadratic equation Now, we can use the quadratic formula to solve for \( \cot \theta \): \[ \cot \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 1, c = 1 \): \[ \cot \theta = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ \cot \theta = \frac{-1 \pm \sqrt{1 - 4}}{2} \] \[ \cot \theta = \frac{-1 \pm \sqrt{-3}}{2} \] \[ \cot \theta = \frac{-1 \pm i\sqrt{3}}{2} \] ### Step 5: Find the general solution for \( \theta \) Since \( \cot \theta \) is complex, we can express \( \theta \) in terms of the inverse cotangent: \[ \theta = \cot^{-1}\left(\frac{-1 \pm i\sqrt{3}}{2}\right) + n\pi, \quad n \in \mathbb{Z} \] ### Final Answer The general solution of the equation is: \[ \theta = n\pi + \cot^{-1}\left(\frac{-1 + i\sqrt{3}}{2}\right) \quad \text{or} \quad \theta = n\pi + \cot^{-1}\left(\frac{-1 - i\sqrt{3}}{2}\right), \quad n \in \mathbb{Z} \]

To solve the equation \( \frac{2 \cot \theta}{2} = (1 + \cot \theta)^2 \), we will follow these steps: ### Step 1: Simplify the left-hand side The left-hand side simplifies to: \[ \cot \theta = (1 + \cot \theta)^2 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the equation tan2theta tan3theta=1 is

General solution of the equation tan^(2)theta+sec2theta=1 is

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

General solution of the equation 4 cot 2 theta = cot^(2) theta - tan^(2) theta is theta =

The general solution of the equation 7cos^2theta+3sin^2theta=4 is theta=2npi+-pi/6,\ n Z b. theta=2npi+-(2pi)/3,\ n Z c. theta=2npi+-pi/3,\ n Z d. none of these

Find the general solution of the trigonometric equation : cot^2 5theta = 0

Prove that cot(theta/2)-tan(theta/2)=2cot theta

Number of solutions of the equation cot( theta ) + cot( theta +(pi)/(3))+ cos ( theta -(pi)/(3))+ cot( 3 theta ) =0 , where theta in ( 0,(pi)/(2))

Solve the equation 2 tan theta - cot theta + 1 = 0

Find the general solutions of the following equation: t a ntheta+cot2"theta"=0