Home
Class 12
MATHS
If cos 2theta=(sqrt(2)+1)(cos theta-(1)/...

If `cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2)))`, then the general value of `theta(n in Z)`

A

`2n pi pm (pi)/(6)`

B

`n pi+(pi)/(12)`

C

`n pi+(7pi)/(36)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 2\theta = (\sqrt{2} + 1) \left( \cos \theta - \frac{1}{\sqrt{2}} \right) \), we will follow these steps: ### Step 1: Use the double angle formula for cosine We know that: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] Substituting this into the equation gives us: \[ 2\cos^2 \theta - 1 = (\sqrt{2} + 1) \left( \cos \theta - \frac{1}{\sqrt{2}} \right) \] ### Step 2: Expand the right-hand side Expanding the right-hand side: \[ 2\cos^2 \theta - 1 = (\sqrt{2} + 1) \cos \theta - \frac{\sqrt{2} + 1}{\sqrt{2}} \] This simplifies to: \[ 2\cos^2 \theta - 1 = (\sqrt{2} + 1) \cos \theta - (\sqrt{2} + 1) \cdot \frac{1}{\sqrt{2}} \] ### Step 3: Simplify the equation We can simplify the right-hand side: \[ \frac{\sqrt{2} + 1}{\sqrt{2}} = 1 + \frac{1}{\sqrt{2}} \] Thus, we rewrite the equation: \[ 2\cos^2 \theta - 1 = (\sqrt{2} + 1) \cos \theta - \left(1 + \frac{1}{\sqrt{2}}\right) \] ### Step 4: Rearrange the equation Rearranging gives us: \[ 2\cos^2 \theta - (\sqrt{2} + 1) \cos \theta + \left(1 + \frac{1}{\sqrt{2}} - 1\right) = 0 \] This simplifies to: \[ 2\cos^2 \theta - (\sqrt{2} + 1) \cos \theta + \frac{1}{\sqrt{2}} = 0 \] ### Step 5: Solve the quadratic equation Let \( x = \cos \theta \). The equation becomes: \[ 2x^2 - (\sqrt{2} + 1)x + \frac{1}{\sqrt{2}} = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{(\sqrt{2} + 1) \pm \sqrt{(\sqrt{2} + 1)^2 - 4 \cdot 2 \cdot \frac{1}{\sqrt{2}}}}{2 \cdot 2} \] ### Step 6: Calculate the discriminant Calculating the discriminant: \[ (\sqrt{2} + 1)^2 - 4 \cdot 2 \cdot \frac{1}{\sqrt{2}} = 3 + 2\sqrt{2} - \frac{8}{\sqrt{2}} = 3 + 2\sqrt{2} - 4\sqrt{2} = 3 - 2\sqrt{2} \] ### Step 7: Find the roots Substituting back into the quadratic formula: \[ x = \frac{(\sqrt{2} + 1) \pm \sqrt{3 - 2\sqrt{2}}}{4} \] ### Step 8: Find the general solutions for \( \theta \) Now we have two values for \( \cos \theta \): 1. \( \cos \theta = \frac{(\sqrt{2} + 1) + \sqrt{3 - 2\sqrt{2}}}{4} \) 2. \( \cos \theta = \frac{(\sqrt{2} + 1) - \sqrt{3 - 2\sqrt{2}}}{4} \) For each value of \( \cos \theta \), we can find \( \theta \): - If \( \cos \theta = k \), then: \[ \theta = \pm \cos^{-1}(k) + 2n\pi \quad \text{where } n \in \mathbb{Z} \] ### Final Answer Thus, the general solutions for \( \theta \) will be: \[ \theta = 2n\pi \pm \cos^{-1}\left(\frac{(\sqrt{2} + 1) + \sqrt{3 - 2\sqrt{2}}}{4}\right) \quad \text{and} \quad \theta = 2n\pi \pm \cos^{-1}\left(\frac{(\sqrt{2} + 1) - \sqrt{3 - 2\sqrt{2}}}{4}\right) \]

To solve the equation \( \cos 2\theta = (\sqrt{2} + 1) \left( \cos \theta - \frac{1}{\sqrt{2}} \right) \), we will follow these steps: ### Step 1: Use the double angle formula for cosine We know that: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] Substituting this into the equation gives us: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

If sintheta=1/2a n dcostheta=-(sqrt(3))/2, then the general value of theta is (n in Z)dot

If costheta=(1)/(sqrt(2)) ,then find the value of cos2theta .

cos theta=sqrt(1-sin theta)

cos theta=sqrt(1-sin theta)

Solve for theta : cos2theta = (sqrt2+1)(costheta - (1)/(sqrt2)) .

cos theta sqrt(1-sin^(2)theta)=

int (d ( cos theta))/(sqrt(1-cos^(2) theta))

If sin theta+ cos theta = sqrt(2) cos theta, (theta ne 90^(@)) then value of tan theta is

cos theta+sqrt(3)sin theta=2