Home
Class 12
MATHS
If alpha in [-2pi, 2pi] and cos.(alpha)/...

If `alpha in [-2pi, 2pi]` and `cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(cos 36^(@)-sin18^(@))`, then a value of `alpha`

A

`(7pi)/(6)`

B

`(pi)/(6)`

C

`-(5pi)/(6)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \frac{\cos(\alpha)}{2} + \frac{\sin(\alpha)}{2} = \sqrt{2} \left( \cos(36^\circ) - \sin(18^\circ) \right) \] ### Step 2: Factor out \(\frac{1}{2}\) We can factor out \(\frac{1}{2}\) from the left-hand side: \[ \frac{1}{2} \left( \cos(\alpha) + \sin(\alpha) \right) = \sqrt{2} \left( \cos(36^\circ) - \sin(18^\circ) \right) \] ### Step 3: Multiply both sides by 2 To eliminate the fraction, multiply both sides by 2: \[ \cos(\alpha) + \sin(\alpha) = 2\sqrt{2} \left( \cos(36^\circ) - \sin(18^\circ) \right) \] ### Step 4: Calculate the right-hand side Now we need to calculate \(2\sqrt{2} \left( \cos(36^\circ) - \sin(18^\circ) \right)\): - Using known values: - \(\cos(36^\circ) = \frac{\sqrt{5}+1}{4}\) - \(\sin(18^\circ) = \frac{\sqrt{5}-1}{4}\) Substituting these values: \[ 2\sqrt{2} \left( \frac{\sqrt{5}+1}{4} - \frac{\sqrt{5}-1}{4} \right) = 2\sqrt{2} \left( \frac{2}{4} \right) = \sqrt{2} \] ### Step 5: Rewrite the equation Now we have: \[ \cos(\alpha) + \sin(\alpha) = \sqrt{2} \] ### Step 6: Use the identity for cosine We can use the identity: \[ \cos(\alpha) + \sin(\alpha) = \sqrt{2} \cos\left(\alpha - \frac{\pi}{4}\right) \] Thus, we can rewrite the equation as: \[ \sqrt{2} \cos\left(\alpha - \frac{\pi}{4}\right) = \sqrt{2} \] ### Step 7: Divide by \(\sqrt{2}\) Dividing both sides by \(\sqrt{2}\): \[ \cos\left(\alpha - \frac{\pi}{4}\right) = 1 \] ### Step 8: Solve for \(\alpha\) The general solution for \(\cos(x) = 1\) is: \[ x = 2n\pi \quad \text{for } n \in \mathbb{Z} \] Thus: \[ \alpha - \frac{\pi}{4} = 2n\pi \] This gives: \[ \alpha = 2n\pi + \frac{\pi}{4} \] ### Step 9: Find specific values of \(\alpha\) Now we need to find values of \(\alpha\) within the range \([-2\pi, 2\pi]\): 1. For \(n = -1\): \[ \alpha = -2\pi + \frac{\pi}{4} = -\frac{8\pi}{4} + \frac{\pi}{4} = -\frac{7\pi}{4} \] 2. For \(n = 0\): \[ \alpha = 0 + \frac{\pi}{4} = \frac{\pi}{4} \] 3. For \(n = 1\): \[ \alpha = 2\pi + \frac{\pi}{4} = \frac{8\pi}{4} + \frac{\pi}{4} = \frac{9\pi}{4} \quad (\text{not in range}) \] ### Step 10: Final values of \(\alpha\) The valid solutions for \(\alpha\) in the range \([-2\pi, 2\pi]\) are: \[ \alpha = -\frac{7\pi}{4}, \quad \alpha = \frac{\pi}{4} \]

To solve the equation given in the problem, we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \frac{\cos(\alpha)}{2} + \frac{\sin(\alpha)}{2} = \sqrt{2} \left( \cos(36^\circ) - \sin(18^\circ) \right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If (pi)/(2)ltalphalt(2pi)/(3)andl=int_(0)^(sin2alpha)(dx)/(sqrt(4cos^(2)alpha-x^(2))) , then the value of (l+alpha)/(pi) must be__________.

If alpha, betaepsilon(0, pi/2) and if sin^4alpha+4cos^4beta+2=4sqrt2 sinalphacosbeta then the value of cos(alpha+beta)-cos(alpha-beta) is (A) sqrt2 (B) 1/sqrt2 (C) -1/sqrt2 (D) -sqrt2

If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2) , then the value of sqrt3 sin alpha+cos alpha is equal to

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

If alpha and beta be between 0 and (pi)/(2)and if cos(alpha+beta)=(12)/(13) and sin(alpha-beta)=3/5, then sin 2 alpha is equal to

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

If alpha and beta are the solution of sinx=-(1)/(2) in [0, 2pi] and alpha and gamma are the solutions of cos x=-(sqrt3)/(2) in [0, 2pi] , then the value of (alpha+beta)/(|beta-gamma|) is equal to

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If sin alpha, sin beta, sin gamma are in AP and cos alpha, cos beta, cos gamma are in GP , then the value of (cos^(2)alpha+cos^(2)gamma+4 cos alpha cos gamma-2 sin alpha sin gamma-2)/(1-2 sin^(2)beta) , where beta != (pi)/(4) , is equal to

if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alpha)/(2)) is purely imaginary then alpha is given by -