Home
Class 12
MATHS
If sin(6/5x) = 0 and cos (x/5) = 0 , the...

If `sin(6/5x) = 0` and `cos (x/5) = 0` , then

A

`x = (n-5)pi`

B

`x=6(n-1)pi`

C

`x=5(n-(1)/(2))pi`

D

`x=5(n+(1)/(2))pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( \sin\left(\frac{6}{5}x\right) = 0 \) and \( \cos\left(\frac{x}{5}\right) = 0 \), we will analyze each equation separately. ### Step 1: Solve \( \sin\left(\frac{6}{5}x\right) = 0 \) The sine function is equal to zero at integer multiples of \( \pi \): \[ \frac{6}{5}x = n\pi \quad \text{for } n \in \mathbb{Z} \] To find \( x \), we rearrange the equation: \[ x = \frac{5n\pi}{6} \] ### Step 2: Solve \( \cos\left(\frac{x}{5}\right) = 0 \) The cosine function is equal to zero at odd multiples of \( \frac{\pi}{2} \): \[ \frac{x}{5} = \frac{(2m+1)\pi}{2} \quad \text{for } m \in \mathbb{Z} \] To find \( x \), we rearrange the equation: \[ x = 5 \cdot \frac{(2m+1)\pi}{2} = \frac{5(2m+1)\pi}{2} \] ### Step 3: Equate the two expressions for \( x \) We have two expressions for \( x \): 1. \( x = \frac{5n\pi}{6} \) 2. \( x = \frac{5(2m+1)\pi}{2} \) Setting these equal gives: \[ \frac{5n\pi}{6} = \frac{5(2m+1)\pi}{2} \] ### Step 4: Simplify the equation Dividing both sides by \( 5\pi \) (assuming \( \pi \neq 0 \)): \[ \frac{n}{6} = \frac{2m+1}{2} \] Cross-multiplying yields: \[ 2n = 6(2m + 1) \] \[ 2n = 12m + 6 \] \[ n = 6m + 3 \] ### Step 5: General solution for \( x \) Substituting \( n \) back into the equation for \( x \): \[ x = \frac{5(6m + 3)\pi}{6} = 5(m + \frac{1}{2})\pi \] Thus, the general solution for \( x \) can be expressed as: \[ x = 5\left(n + \frac{1}{2}\right)\pi \quad \text{for } n \in \mathbb{Z} \] ### Conclusion The solutions for the equations \( \sin\left(\frac{6}{5}x\right) = 0 \) and \( \cos\left(\frac{x}{5}\right) = 0 \) are given by: \[ x = \frac{5n\pi}{6} \quad \text{and} \quad x = \frac{5(2m+1)\pi}{2} \]

To solve the equations \( \sin\left(\frac{6}{5}x\right) = 0 \) and \( \cos\left(\frac{x}{5}\right) = 0 \), we will analyze each equation separately. ### Step 1: Solve \( \sin\left(\frac{6}{5}x\right) = 0 \) The sine function is equal to zero at integer multiples of \( \pi \): \[ \frac{6}{5}x = n\pi \quad \text{for } n \in \mathbb{Z} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(sin^(-1)'2/5 + cos^(-1)x) = 0 , then x is equal to

Statement -1 : lim_( x to 0) (sin x)/x exists ,. Statement -2 : |x| is differentiable at x=0 Statement -3 : If lim_(x to 0) (tan kx)/(sin 5x) = 3 , then k = 15

sin 10 x = 2 sin 5x cos 5x

If int sin 3x cos 5x dx=0 when x=0 , then the value of constant of integration

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is

If f(x) ={:{((sin 3x)/(sin 5x)", "x ne 0),(0", " x= 0):}, then discuss its continuity at x= 0. .

The maximum value of sin(x+pi/5)+cos(x+pi/5), where x in (0, pi/2), is attained at

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :