Home
Class 12
MATHS
The equation x^3=3/4x=-(sqrt(3))/8 is sa...

The equation `x^3=3/4x=-(sqrt(3))/8` is satisfied by `x=cos((5pi)/(18))` (b) `x=cos((7pi)/(18))` `x=cos((23pi)/(18))` (d) `x=cos((17pi)/(18))`

A

`x=cos((5pi)/(18))`

B

`x =cos((7pi)/(18))`

C

`x=cos((23pi)/(18))`

D

`x=-sin((7pi)/(9))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^3 - \frac{3}{4}x = -\frac{\sqrt{3}}{8} \) and determine which values of \( x \) satisfy it, we will follow these steps: ### Step 1: Rearrange the Equation Start with the given equation: \[ x^3 - \frac{3}{4}x + \frac{\sqrt{3}}{8} = 0 \] To eliminate the fractions, we can multiply through by 8 (the least common multiple of the denominators): \[ 8x^3 - 6x + \sqrt{3} = 0 \] ### Step 2: Substitute \( x \) with \( \cos(\theta) \) Let \( x = \cos(\theta) \). Then, substituting this into the equation gives: \[ 8\cos^3(\theta) - 6\cos(\theta) + \sqrt{3} = 0 \] ### Step 3: Use the Identity for Cosine We can use the identity \( 4\cos^3(\theta) - 3\cos(\theta) = \cos(3\theta) \). Thus, we rewrite the equation: \[ 2\cos(3\theta) + \sqrt{3} = 0 \] This simplifies to: \[ \cos(3\theta) = -\frac{\sqrt{3}}{2} \] ### Step 4: Solve for \( 3\theta \) The cosine function equals \(-\frac{\sqrt{3}}{2}\) at specific angles: \[ 3\theta = \frac{5\pi}{6} + 2n\pi \quad \text{and} \quad 3\theta = \frac{7\pi}{6} + 2n\pi \quad (n \in \mathbb{Z}) \] ### Step 5: Solve for \( \theta \) Now, we divide by 3 to find \( \theta \): 1. From \( 3\theta = \frac{5\pi}{6} + 2n\pi \): \[ \theta = \frac{5\pi}{18} + \frac{2n\pi}{3} \] 2. From \( 3\theta = \frac{7\pi}{6} + 2n\pi \): \[ \theta = \frac{7\pi}{18} + \frac{2n\pi}{3} \] ### Step 6: Find Specific Values of \( x \) Now, we can find specific values by substituting \( n = 0 \) and \( n = 1 \): - For \( n = 0 \): - From \( \theta = \frac{5\pi}{18} \) - From \( \theta = \frac{7\pi}{18} \) - For \( n = 1 \): - From \( \theta = \frac{5\pi}{18} + \frac{2\pi}{3} = \frac{5\pi}{18} + \frac{12\pi}{18} = \frac{17\pi}{18} \) - From \( \theta = \frac{7\pi}{18} + \frac{2\pi}{3} = \frac{7\pi}{18} + \frac{12\pi}{18} = \frac{19\pi}{18} \) (but this is not in the range of \( \cos \)) ### Conclusion The valid solutions for \( x \) are: - \( x = \cos\left(\frac{5\pi}{18}\right) \) - \( x = \cos\left(\frac{7\pi}{18}\right) \) - \( x = \cos\left(\frac{17\pi}{18}\right) \) Thus, the values of \( x \) that satisfy the equation are: - \( \cos\left(\frac{5\pi}{18}\right) \) - \( \cos\left(\frac{7\pi}{18}\right) \) - \( \cos\left(\frac{17\pi}{18}\right) \)

To solve the equation \( x^3 - \frac{3}{4}x = -\frac{\sqrt{3}}{8} \) and determine which values of \( x \) satisfy it, we will follow these steps: ### Step 1: Rearrange the Equation Start with the given equation: \[ x^3 - \frac{3}{4}x + \frac{\sqrt{3}}{8} = 0 \] To eliminate the fractions, we can multiply through by 8 (the least common multiple of the denominators): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

Prove that cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + cos ^(4) ""(5pi)/(8) + cos ^(4) "" (7pi)/(8) = (3)/(2)

prove that : sin((5pi)/18)-cos((4pi)/9)=sqrt(3)sin(pi/9)

Prove that: cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=3/2

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is : (a) "cos"(pi)/(5) (b) "cos"(pi)/(4) (c) "cos"(pi)/(8) (d) "cos"(pi)/(12)

sin(pi/18)*sin(5pi/18)*sin(7pi/18)

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)