Home
Class 12
MATHS
If alpha < beta < gamma and sin gamma co...

If `alpha < beta < gamma` and `sin gamma cos alpha=1,` where `alpha,gamma in[pi,2 pi],` then the least integral value of `f(x) = | x - alpha| + | x - beta| + |x - gamma|` is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

`sin gamma.cos alpha =1 alpha, gamma in [pi, 2pi]`
`therefore sin gamma = cos alpha =1`
`rArr gamma = pi//2, alpha = 2pi` (rejected) `(as alpha lt beta lt gamma)`
Other possibility is `sin gamma = cos alpha =-1 rArr gamma = 3 pi//2, alpha = pi`
`f(x)|_(min)=f(beta)=beta-alpha+0+gamma-beta`
`=gamma -alpha`
`=(3pi)/(2)-pi=(pi)/(2)`
`f(x)ge pi//2 rArr` least integral value of f(x) is 2.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I , find the value of alpha .

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If 1,alpha,alpha^2,alpha^3,......,alpha^(n-1) are n n^(th) roots of unity, then find the value of (2011-alpha)(2011-alpha^2)....(2011-alpha^(n-1))

If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the value of (3-alpha)(3-alpha^(2))(3-alpha^(3))……(3-alpha^(n-1)) , is

if A=[{:(alpha,2),(2, alpha):}] and |A|^(3)=125 then the value of alpha is

A value of alpha such that int_(alpha)^(alpha+1) (dx)/((x+a)(x+alpha+1))="loge"((9)/(8)) is

If 1,alpha_1,alpha_2,alpha_3,alpha_4 be the roots x^5-1=0 , then value of [omega-alpha_1]/[omega^2-alpha_1].[omega-alpha_2]/[omega^2-alpha_2].[omega-alpha_3]/[omega^2-alpha_3].[omega-alpha_4]/[omega^2-alpha_4] is (where omega is imaginary cube root of unity)