Home
Class 12
MATHS
If (sin 3theta)/(cos 2theta)lt 0, then t...

If `(sin 3theta)/(cos 2theta)lt 0`, then `theta` lies in

A

`((3pi),(8),(23pi)/(48))`

B

`((7pi)/(24),(3pi)/(8))`

C

`((13pi)/(48),(7pi)/(24))`

D

`((2pi)/(4),(7pi)/(12))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{\sin(3\theta)}{\cos(2\theta)} < 0\), we need to analyze when the numerator and denominator have opposite signs. This can happen in two scenarios: ### Step 1: Identify the cases 1. **Case 1:** \(\sin(3\theta) < 0\) and \(\cos(2\theta) > 0\) 2. **Case 2:** \(\sin(3\theta) > 0\) and \(\cos(2\theta) < 0\) ### Step 2: Analyze Case 1 **For Case 1:** - \(\sin(3\theta) < 0\) occurs in the intervals where \(3\theta\) is in the third and fourth quadrants: \[ 3\theta \in (\pi, 2\pi) \Rightarrow \theta \in \left(\frac{\pi}{3}, \frac{2\pi}{3}\right) \] - \(\cos(2\theta) > 0\) occurs in the intervals where \(2\theta\) is in the first and fourth quadrants: \[ 2\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Rightarrow \theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \] ### Step 3: Combine results from Case 1 From Case 1, we have: - \(\theta \in \left(\frac{\pi}{3}, \frac{2\pi}{3}\right)\) - \(\theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)\) The intersection of these intervals is empty, so we move to Case 2. ### Step 4: Analyze Case 2 **For Case 2:** - \(\sin(3\theta) > 0\) occurs in the intervals where \(3\theta\) is in the first and second quadrants: \[ 3\theta \in (0, \pi) \Rightarrow \theta \in \left(0, \frac{\pi}{3}\right) \] - \(\cos(2\theta) < 0\) occurs in the intervals where \(2\theta\) is in the second and third quadrants: \[ 2\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \Rightarrow \theta \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \] ### Step 5: Combine results from Case 2 From Case 2, we have: - \(\theta \in \left(0, \frac{\pi}{3}\right)\) - \(\theta \in \left(\frac{\pi}{4}, \frac{3\pi}{4}\right)\) The intersection of these intervals is: \[ \theta \in \left(\frac{\pi}{4}, \frac{\pi}{3}\right) \] ### Final Result Thus, the final range for \(\theta\) where \(\frac{\sin(3\theta)}{\cos(2\theta)} < 0\) is: \[ \theta \in \left(\frac{\pi}{4}, \frac{\pi}{3}\right) \]

To solve the inequality \(\frac{\sin(3\theta)}{\cos(2\theta)} < 0\), we need to analyze when the numerator and denominator have opposite signs. This can happen in two scenarios: ### Step 1: Identify the cases 1. **Case 1:** \(\sin(3\theta) < 0\) and \(\cos(2\theta) > 0\) 2. **Case 2:** \(\sin(3\theta) > 0\) and \(\cos(2\theta) < 0\) ### Step 2: Analyze Case 1 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

If sqrt3sin theta+costhetagt0, then theta lies in the interval

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

Prove that : (sin 5theta + sin 3theta)/(cos 5theta + cos 3theta) = tan 4theta

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is