Home
Class 12
MATHS
If 2 sin^(2)(x-(pi)/(3))-5sin(x-(pi)/(3)...

If `2 sin^(2)(x-(pi)/(3))-5sin(x-(pi)/(3))+2lt0`, then belongs to

A

`(((12n-5)pi)/(6),((4n+1)pi)/(2)),n in Z`

B

`(((6n-7)pi)/(6),((2n+1)pi)/(2)),n in Z`

C

`(((4n+1)pi)/(6),n pi),n in Z`

D

`((4n+1)(pi)/(2),(12n+7)(pi)/(6)),n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2 \sin^2\left(x - \frac{\pi}{3}\right) - 5 \sin\left(x - \frac{\pi}{3}\right) + 2 < 0 \), we will follow these steps: ### Step 1: Substitute \( t \) Let \( t = \sin\left(x - \frac{\pi}{3}\right) \). Then the inequality becomes: \[ 2t^2 - 5t + 2 < 0 \] ### Step 2: Factor the quadratic We need to factor the quadratic expression \( 2t^2 - 5t + 2 \). We can rewrite it as: \[ 2t^2 - 4t - t + 2 < 0 \] Grouping the terms: \[ 2t(t - 2) - 1(t - 2) < 0 \] Factoring out \( (t - 2) \): \[ (2t - 1)(t - 2) < 0 \] ### Step 3: Find critical points To find the critical points, we set each factor equal to zero: 1. \( 2t - 1 = 0 \) gives \( t = \frac{1}{2} \) 2. \( t - 2 = 0 \) gives \( t = 2 \) ### Step 4: Determine the intervals The critical points divide the number line into intervals. We will test the sign of the expression \( (2t - 1)(t - 2) \) in the intervals: - \( (-\infty, \frac{1}{2}) \) - \( \left(\frac{1}{2}, 2\right) \) - \( (2, \infty) \) ### Step 5: Test the intervals 1. For \( t < \frac{1}{2} \) (e.g., \( t = 0 \)): \[ (2(0) - 1)(0 - 2) = (-1)(-2) = 2 > 0 \] 2. For \( \frac{1}{2} < t < 2 \) (e.g., \( t = 1 \)): \[ (2(1) - 1)(1 - 2) = (1)(-1) = -1 < 0 \] 3. For \( t > 2 \) (e.g., \( t = 3 \)): \[ (2(3) - 1)(3 - 2) = (6 - 1)(1) = 5 > 0 \] ### Step 6: Conclusion from intervals The inequality \( (2t - 1)(t - 2) < 0 \) holds in the interval: \[ \frac{1}{2} < t < 2 \] Since \( t = \sin\left(x - \frac{\pi}{3}\right) \), and knowing that the sine function has a maximum value of 1, we restrict \( t \) to: \[ \frac{1}{2} < \sin\left(x - \frac{\pi}{3}\right) \leq 1 \] ### Step 7: Solve for \( x \) Now we solve the inequalities: 1. \( \sin\left(x - \frac{\pi}{3}\right) = \frac{1}{2} \) - This occurs at \( x - \frac{\pi}{3} = \frac{\pi}{6} \) or \( x - \frac{\pi}{3} = \frac{5\pi}{6} \). - Thus, \( x = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2} \) and \( x = \frac{5\pi}{6} + \frac{\pi}{3} = \frac{7\pi}{6} \). 2. The general solutions for \( x \) are: - \( x = 2n\pi + \frac{\pi}{2} \) - \( x = 2n\pi + \frac{7\pi}{6} \) ### Final Result Thus, the final solution for \( x \) is: \[ x \in \left(2n\pi + \frac{\pi}{2}, 2n\pi + \frac{7\pi}{6}\right) \quad \text{where } n \in \mathbb{Z} \]

To solve the inequality \( 2 \sin^2\left(x - \frac{\pi}{3}\right) - 5 \sin\left(x - \frac{\pi}{3}\right) + 2 < 0 \), we will follow these steps: ### Step 1: Substitute \( t \) Let \( t = \sin\left(x - \frac{\pi}{3}\right) \). Then the inequality becomes: \[ 2t^2 - 5t + 2 < 0 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

Evaluate: int(sin2x)/(sin(x-pi/3)sin(x+pi/3))\ dx

For x in ((-pi)/(2),(pi)/(2)) , the range of values of values of f(x)=2 +sinx+sin^(3)x+sin^(5)x…..oo

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

The following functions are continuous on (0, pi) (a) tan x (b) underset(0)overset(x)int t "sin"(1)/(t)dt (c) {{:(,-1,0 lt xle (3pi)/(4)),(,2sin((2)/(9)x),(3pi)/(4)lt xlt pi):} (d) {{:(,x sin x,0 lt x le (pi)/(2)),(,(pi)/(2)sin(pi+x),(pi)/(2)lt x lt pi):}

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

If tan x = -(4)/(3), (pi)/(2) lt x lt pi , then find the value of sin(x/2), cos(x/2) and tan(x/2) .

If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3) and g(5/4)=1, then (gof)(x) is ____________