Home
Class 12
MATHS
The function f(x)=sqrt(3)sin x-cos x wil...

The function `f(x)=sqrt(3)sin x-cos x` will increase monotically in the interval(s)

A

`0le x le (pi)/(2)`

B

`-(pi)/(3)le x le (2pi)/(3)`

C

`(5pi)/(3)le x le(8pi)/(3)`

D

`0 le x le pi`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the intervals in which the function \( f(x) = \sqrt{3} \sin x - \cos x \) increases monotonically, we will follow these steps: ### Step 1: Find the derivative of the function To find where the function is increasing, we need to compute the derivative \( f'(x) \). \[ f'(x) = \sqrt{3} \cos x + \sin x \] ### Step 2: Set the derivative greater than zero The function \( f(x) \) is increasing where \( f'(x) > 0 \). \[ \sqrt{3} \cos x + \sin x > 0 \] ### Step 3: Rearrange the inequality We can rearrange the inequality: \[ \sin x > -\sqrt{3} \cos x \] ### Step 4: Divide both sides by \( \cos x \) (where \( \cos x \neq 0 \)) This gives us: \[ \tan x > -\sqrt{3} \] ### Step 5: Determine the angles The inequality \( \tan x > -\sqrt{3} \) corresponds to angles where the tangent function is greater than \( -\sqrt{3} \). The reference angle for \( \tan x = -\sqrt{3} \) is \( -\frac{\pi}{3} \). ### Step 6: Identify the intervals The tangent function is periodic with a period of \( \pi \). Thus, we can find the intervals where \( \tan x > -\sqrt{3} \): 1. The first interval starts from \( -\frac{\pi}{3} \) to \( \frac{2\pi}{3} \). 2. The second interval starts from \( \frac{2\pi}{3} + \pi \) to \( \frac{5\pi}{3} + \pi \), which is \( \frac{5\pi}{3} \) to \( \frac{8\pi}{3} \). ### Step 7: Combine the intervals Thus, the function \( f(x) \) increases monotonically in the intervals: \[ \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right] \quad \text{and} \quad \left[\frac{5\pi}{3}, \frac{8\pi}{3}\right] \] ### Final Answer The function \( f(x) = \sqrt{3} \sin x - \cos x \) increases monotonically in the intervals \( \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right] \) and \( \left[\frac{5\pi}{3}, \frac{8\pi}{3}\right] \). ---

To determine the intervals in which the function \( f(x) = \sqrt{3} \sin x - \cos x \) increases monotonically, we will follow these steps: ### Step 1: Find the derivative of the function To find where the function is increasing, we need to compute the derivative \( f'(x) \). \[ f'(x) = \sqrt{3} \cos x + \sin x \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = sin ^(-1)(cos x) is

The function f(x) = sin ^(4)x+ cos ^(4)x increases, if

The function f(x)=sin^4x+cos^4x increasing in interval

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

The range of the function f(x)=3|sin x|-2|cos x| is :

Find the interval in which the function f(x) = sqrt3 sin 2x - cos 2x + 4 is one - one

The function f(x)=2 cos 5x+3 sin sqrt(5x) , is

Show that the function f(x)= x^(2) is strictly increasing function in the interval ]0,infty[ .

The function f(x) = x^(x) , x gt 0 , is increasing on the interval

The function f(x) = 7 + x - e^(x) is strictly increasing in the interval