Home
Class 12
MATHS
The values of x which satisfy 18(sin^(-1...

The values of x which satisfy `18(sin^(-1)x)^(2)-9pi sin^(-1)x +pi^(2)lt 0` and `18(tan^(-1)x)^(2)-9pi tan^(-1)x + pi^(2)lt 0` simultaneously are

A

`((sqrt(3))/(3),(sqrt(3))/(2))`

B

`((sqrt(3))/(2),1)`

C

`((1)/(3),(sqrt(3))/(2))`

D

`((1)/(sqrt(3)),sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequalities \( 18(\sin^{-1} x)^2 - 9\pi \sin^{-1} x + \pi^2 < 0 \) and \( 18(\tan^{-1} x)^2 - 9\pi \tan^{-1} x + \pi^2 < 0 \) simultaneously, we can follow these steps: ### Step 1: Solve the first inequality We start with the inequality: \[ 18(\sin^{-1} x)^2 - 9\pi \sin^{-1} x + \pi^2 < 0 \] Divide the entire inequality by 18: \[ (\sin^{-1} x)^2 - \frac{9\pi}{18} \sin^{-1} x + \frac{\pi^2}{18} < 0 \] This simplifies to: \[ (\sin^{-1} x)^2 - \frac{\pi}{2} \sin^{-1} x + \frac{\pi^2}{18} < 0 \] ### Step 2: Factor the quadratic Next, we need to factor the quadratic: \[ (\sin^{-1} x)^2 - \frac{\pi}{2} \sin^{-1} x + \frac{\pi^2}{18} < 0 \] We can find the roots using the quadratic formula: \[ \sin^{-1} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -\frac{\pi}{2}, c = \frac{\pi^2}{18} \): \[ \sin^{-1} x = \frac{\frac{\pi}{2} \pm \sqrt{\left(-\frac{\pi}{2}\right)^2 - 4 \cdot 1 \cdot \frac{\pi^2}{18}}}{2 \cdot 1} \] Calculating the discriminant: \[ \left(-\frac{\pi}{2}\right)^2 - 4 \cdot 1 \cdot \frac{\pi^2}{18} = \frac{\pi^2}{4} - \frac{4\pi^2}{18} = \frac{\pi^2}{4} - \frac{2\pi^2}{9} \] Finding a common denominator (36): \[ \frac{9\pi^2}{36} - \frac{8\pi^2}{36} = \frac{\pi^2}{36} \] Now substituting back: \[ \sin^{-1} x = \frac{\frac{\pi}{2} \pm \frac{\pi}{6}}{2} \] Calculating the roots: \[ \sin^{-1} x = \frac{3\pi}{12} = \frac{\pi}{4} \quad \text{and} \quad \sin^{-1} x = \frac{\pi}{12} \] ### Step 3: Determine the intervals The roots are \( \frac{\pi}{12} \) and \( \frac{\pi}{4} \). The quadratic opens upwards, so the inequality \( < 0 \) holds between the roots: \[ \frac{\pi}{12} < \sin^{-1} x < \frac{\pi}{4} \] Taking the sine of all parts: \[ \sin\left(\frac{\pi}{12}\right) < x < \sin\left(\frac{\pi}{4}\right) \] Calculating these values: \[ \sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] ### Step 4: Solve the second inequality Now we solve the second inequality: \[ 18(\tan^{-1} x)^2 - 9\pi \tan^{-1} x + \pi^2 < 0 \] Following the same steps as before, we find: \[ (\tan^{-1} x)^2 - \frac{\pi}{2} \tan^{-1} x + \frac{\pi^2}{18} < 0 \] The roots will be the same as for the sine case, so: \[ \frac{\pi}{12} < \tan^{-1} x < \frac{\pi}{4} \] Taking the tangent of all parts: \[ \tan\left(\frac{\pi}{12}\right) < x < \tan\left(\frac{\pi}{4}\right) \] Calculating these values: \[ \tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}, \quad \tan\left(\frac{\pi}{4}\right) = 1 \] ### Step 5: Combine the intervals Now we combine the intervals from both inequalities: 1. From the sine inequality: \[ \frac{\sqrt{6} - \sqrt{2}}{4} < x < \frac{\sqrt{2}}{2} \] 2. From the tangent inequality: \[ 2 - \sqrt{3} < x < 1 \] ### Final Result The values of \( x \) that satisfy both inequalities simultaneously are: \[ \max\left(\frac{\sqrt{6} - \sqrt{2}}{4}, 2 - \sqrt{3}\right) < x < \min\left(\frac{\sqrt{2}}{2}, 1\right) \]

To solve the inequalities \( 18(\sin^{-1} x)^2 - 9\pi \sin^{-1} x + \pi^2 < 0 \) and \( 18(\tan^{-1} x)^2 - 9\pi \tan^{-1} x + \pi^2 < 0 \) simultaneously, we can follow these steps: ### Step 1: Solve the first inequality We start with the inequality: \[ 18(\sin^{-1} x)^2 - 9\pi \sin^{-1} x + \pi^2 < 0 \] Divide the entire inequality by 18: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

Statement-1: If alpha,beta roots of the equation 18(tan^(-1)x)^(2)-9pi tan^(-1)x+pi^(2)=0 then alpha+beta =(4)/sqrt(3) Statement-2: sec^(2)cos^(-1)(1/4)+cosec^(2)sin^(-1)(1/5)=41

The complete set of values of x satisfying ( 2 sin 6x)/(sin x -1) lt 0 and sec^(2) x - 2sqrt(2) tan x le 0 in (0, (pi)/(2)) is [ a,b) cup (c, d], then find the value of ((cd)/(ab)) .

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

For x in (0,(pi)/(2)) prove that "sin"^(2) x lt x^(2) lt " tan"^(2) x