Home
Class 12
MATHS
If f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(...

If `f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(-1)(sec(cos^(-1)x))`, then f(x) takes

A

exactly two values

B

one value

C

undefined

D

infinite values

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( f(x) = \sin^{-1}(\csc(\sin^{-1}(x))) + \cos^{-1}(\sec(\cos^{-1}(x))) \), we will simplify each term step by step. ### Step 1: Simplifying \( \sin^{-1}(\csc(\sin^{-1}(x))) \) Let \( y = \sin^{-1}(x) \). Then, by definition, we have: \[ \sin(y) = x \] The cosecant function is the reciprocal of the sine function: \[ \csc(y) = \frac{1}{\sin(y)} = \frac{1}{x} \] Now, we need to find \( \sin^{-1}(\csc(y)) \): \[ \sin^{-1}(\csc(y)) = \sin^{-1}\left(\frac{1}{x}\right) \] ### Step 2: Simplifying \( \cos^{-1}(\sec(\cos^{-1}(x))) \) Let \( z = \cos^{-1}(x) \). Then, by definition, we have: \[ \cos(z) = x \] The secant function is the reciprocal of the cosine function: \[ \sec(z) = \frac{1}{\cos(z)} = \frac{1}{x} \] Now, we need to find \( \cos^{-1}(\sec(z)) \): \[ \cos^{-1}(\sec(z)) = \cos^{-1}\left(\frac{1}{x}\right) \] ### Step 3: Combining the Results Now we can combine the results from Step 1 and Step 2: \[ f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right) \] ### Step 4: Using the Identity We know that: \[ \sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2} \quad \text{for } |a| \leq 1 \] Here, \( a = \frac{1}{x} \). Therefore, we need to ensure that \( |x| \geq 1 \) for \( \frac{1}{x} \) to be valid in the domain of the inverse sine and cosine functions. ### Conclusion Thus, we conclude: \[ f(x) = \frac{\pi}{2} \quad \text{if } |x| \geq 1 \]

To solve the problem \( f(x) = \sin^{-1}(\csc(\sin^{-1}(x))) + \cos^{-1}(\sec(\cos^{-1}(x))) \), we will simplify each term step by step. ### Step 1: Simplifying \( \sin^{-1}(\csc(\sin^{-1}(x))) \) Let \( y = \sin^{-1}(x) \). Then, by definition, we have: \[ \sin(y) = x \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Range of f(x)=sin^(- 1)x+sec^(- 1)x is

If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)+sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is _______ .

If f(x)={s in(cos^(-1)x)+cos(sin^(-1)x),xlt=0s in(cos^(-1)x)-cos(sin^(-1)x ,x >0) . Then at x=0 f(x) is continuous and differentiable f(x) is continuous but not differentiable f(x) not continuous but differentiable f(x) is neither continuous nor differentiable

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is

Let t_(1)= (sin^(-1)x)^(sin^(-1)x),t_(2)= (sin^(-1) x)^(cos^(-1)x),t_(3) = (cos^(-1)x)^(sin^(-1)x),t_(4) = (cos^(-1)x)^(cos^(-1)x) , Match the follwing items of Column I with Column II

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?