Home
Class 12
MATHS
The number of ordered triplets (x,y,z) s...

The number of ordered triplets `(x,y,z)` satisfy the equation `(sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2`

A

2

B

4

C

6

D

8

Text Solution

Verified by Experts

The correct Answer is:
A

`(sin^(-1)x)in[-(pi)/(2),(pi)/(2)]`
`therefore (sin^(-1)x)^(2)le (pi^(2))/(4)`
`(sec^(-1)y)^(2), (tan^(-1)z)^(2)ge 0`
`therefore R.H.S. ge (pi^(2))/(4)`
`therefore (sin^(-1)x)^(2)=(pi^(2))/(4)`
`therefore (sex^(-1)y)^(2)+(tan^(-1)z)^(2)=0`
or `sec^(-1)y=tan^(-1)z=0`
`therefore sin^(-1)x = pm(pi)/(2), y = 1, z = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x in[0,6 pi],y in[0,6 pi] then the number of ordered pair (x,y) which satisfy the equation sin^(-1)sin x+cos^(-1)cos y=(3 pi)/(2) are

If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x , y , z) that satisfy the equation is 0 (b) 1 (c) 2 (d) Infinite solutions

Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2-1=0;-pi < x< pi is

Find the number of ordered pairs of natural numbers (x, y) satisfying the equation: (xy-1)^(2) = (x+1)^(2) + (y+1)^(2)

The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :

The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y)+cos^(2) (x-y)=1 which lie on the circle x^(2)+y^(2)=pi^(2) is _________.

Find the number of ordered pair of real numbers (x, y) satisfying the equation: 5x(1+1/(x^(2)+y^(2)))=12 & 5y(1-1/(x^(2) + y^(2))) =4

The number of ordered pair(s) of (x, y) satisfying the equations log_((1+x))(1-2y+y^(2))+log_((1-y))(1+2x+x^(2))=4 and log_((1+x))(1+2y)+log_((1-y))(1+2x)=2

Find the number of triplets (x, y, z) of integers satisfying the equations x + y = 1 - z and x^(3) + y^(3) =1-z^(2) (where z ne 1 )

The number of ordered pairs (x, y) , when x, y in [ 0, 10] satisfying (sqrt(sin^(2)x- sinx + 1/2))*2^(sec^(2)y) le 1 is