Home
Class 12
MATHS
The range of function f(x)=sin^(-1)(x-sq...

The range of function `f(x)=sin^(-1)(x-sqrt(x))` is equal to

A

`["sin"^(-1)(1)/(4),(pi)/(2)]`

B

`["sin"^(-1),(pi)/(2)]`

C

`[-"sin"^(-1)(1)/(4),(pi)/(2)]`

D

`[-"sin"^(-1)(1)/(2),(pi)/(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}(x - \sqrt{x}) \), we will follow these steps: ### Step 1: Define the function We start with the function: \[ f(x) = \sin^{-1}(x - \sqrt{x}) \] ### Step 2: Simplify the expression inside the inverse sine We need to analyze the expression \( x - \sqrt{x} \). To do this, we can rewrite it in a more manageable form. We can express \( x \) in terms of \( \sqrt{x} \): Let \( y = \sqrt{x} \). Then \( x = y^2 \), and we can rewrite the expression as: \[ x - \sqrt{x} = y^2 - y \] ### Step 3: Find the minimum and maximum values of \( y^2 - y \) Now, we need to find the range of \( y^2 - y \). This is a quadratic function in \( y \): \[ g(y) = y^2 - y \] To find the vertex of this parabola, we can use the vertex formula \( y = -\frac{b}{2a} \): \[ y = -\frac{-1}{2 \cdot 1} = \frac{1}{2} \] Now, we can find the value of \( g(y) \) at this point: \[ g\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4} \] ### Step 4: Determine the range of \( g(y) \) The function \( g(y) = y^2 - y \) opens upwards (since the coefficient of \( y^2 \) is positive). Therefore, the minimum value occurs at \( y = \frac{1}{2} \), which we found to be \( -\frac{1}{4} \). As \( y \) approaches infinity, \( g(y) \) approaches infinity as well. Thus, the range of \( g(y) \) is: \[ [-\frac{1}{4}, \infty) \] ### Step 5: Find the range of the inverse sine function Now, we need to consider the function \( f(x) = \sin^{-1}(g(y)) \). The output of the inverse sine function is defined for inputs in the range \([-1, 1]\). Therefore, we need to find the intersection of the range of \( g(y) \) with \([-1, 1]\). The minimum value of \( g(y) \) is \( -\frac{1}{4} \), which is within the range of the inverse sine function. The maximum value of \( g(y) \) can go to infinity, but we only consider values up to 1 for the inverse sine function. ### Step 6: Determine the final range of \( f(x) \) Thus, the range of \( f(x) = \sin^{-1}(x - \sqrt{x}) \) is: \[ \left[\sin^{-1}(-\frac{1}{4}), \sin^{-1}(1)\right] \] Since \( \sin^{-1}(1) = \frac{\pi}{2} \), we need to compute \( \sin^{-1}(-\frac{1}{4}) \): \[ f(x) \text{ has a range of } \left[-\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2}\right] \] ### Final Answer The range of the function \( f(x) = \sin^{-1}(x - \sqrt{x}) \) is: \[ \left[-\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2}\right] \]

To find the range of the function \( f(x) = \sin^{-1}(x - \sqrt{x}) \), we will follow these steps: ### Step 1: Define the function We start with the function: \[ f(x) = \sin^{-1}(x - \sqrt{x}) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

The range of the function f(x) = (1)/(2-sin 3x) is

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

The range of the function f(x)=3|sin x|-2|cos x| is :

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

Range of the function f(x)=(1+x^2)/(x^2) is equal to

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

The range of the function f(x)=sin{log_(10)((sqrt(4-x^(2)))/(1-x))} ,is