Home
Class 12
MATHS
The principal values of cos^(-1)(-sin(7p...

The principal values of `cos^(-1)(-sin(7pi)/(6))` is

A

`(5pi)/(3)`

B

`(7pi)/(6)`

C

`(pi)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal value of \( \cos^{-1}\left(-\sin\left(\frac{7\pi}{6}\right)\right) \), we will follow these steps: ### Step 1: Simplify \( \sin\left(\frac{7\pi}{6}\right) \) We start by simplifying \( \sin\left(\frac{7\pi}{6}\right) \). We can express \( \frac{7\pi}{6} \) as \( \pi + \frac{\pi}{6} \). Using the sine addition formula, we know: \[ \sin(\pi + x) = -\sin(x) \] Thus, \[ \sin\left(\frac{7\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) \] ### Step 2: Find \( \sin\left(\frac{\pi}{6}\right) \) Now, we know: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] So, \[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \] ### Step 3: Substitute back into the expression Now we substitute this back into our original expression: \[ \cos^{-1}\left(-\sin\left(\frac{7\pi}{6}\right)\right) = \cos^{-1}\left(-\left(-\frac{1}{2}\right)\right) = \cos^{-1}\left(\frac{1}{2}\right) \] ### Step 4: Find \( \cos^{-1}\left(\frac{1}{2}\right) \) The principal value of \( \cos^{-1}\left(\frac{1}{2}\right) \) is: \[ \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \] ### Final Answer Thus, the principal value of \( \cos^{-1}\left(-\sin\left(\frac{7\pi}{6}\right)\right) \) is: \[ \frac{\pi}{3} \] ---

To find the principal value of \( \cos^{-1}\left(-\sin\left(\frac{7\pi}{6}\right)\right) \), we will follow these steps: ### Step 1: Simplify \( \sin\left(\frac{7\pi}{6}\right) \) We start by simplifying \( \sin\left(\frac{7\pi}{6}\right) \). We can express \( \frac{7\pi}{6} \) as \( \pi + \frac{\pi}{6} \). Using the sine addition formula, we know: \[ \sin(\pi + x) = -\sin(x) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The principal value of cos^(-1)("cos"(7pi)/6) is

sin^(-1)(sin ((7pi)/6))

Write the principal value of, cos^(-1)\ (cos(7pi)/6)

Write the principal value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3))

What is the principal value of cos^(-1)(cos(("2pi")/3))+sin^(-1)(sin(("2pi")/3))?

The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3 .

The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is

What is the principal value of cos^(-1)cos((2pi)/3)+sin^(-1)sin((2pi)/3)?

Write the principal value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3)

Value of cos^(-1) cos(13pi)/(6) is