Home
Class 12
MATHS
The value of sec(sin^-1(sin((-50pi)/9))+...

The value of `sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))`

A

`sec.(10pi)/(9)`

B

`sec.(pi)/(9)`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec(\sin^{-1}(\sin(-\frac{50\pi}{9})) + \cos^{-1}(\cos(\frac{31\pi}{9}))) \), we will break it down into manageable parts. ### Step 1: Simplify \( \sin^{-1}(\sin(-\frac{50\pi}{9})) \) First, we need to simplify \( \sin^{-1}(\sin(-\frac{50\pi}{9})) \). 1. **Convert the angle**: \[ -\frac{50\pi}{9} = -6\pi + \frac{4\pi}{9} \] This is because \( -6\pi \) is a multiple of \( 2\pi \) and we can add \( 6\pi \) to the angle to bring it within the principal range of the sine function. 2. **Use the property of sine**: \[ \sin(-\frac{50\pi}{9}) = \sin(4\pi/9) \] Thus, \[ \sin^{-1}(\sin(-\frac{50\pi}{9})) = \sin^{-1}(\sin(4\pi/9)) = \frac{4\pi}{9} \] ### Step 2: Simplify \( \cos^{-1}(\cos(\frac{31\pi}{9})) \) Next, we simplify \( \cos^{-1}(\cos(\frac{31\pi}{9})) \). 1. **Convert the angle**: \[ \frac{31\pi}{9} = 4\pi - \frac{5\pi}{9} \] This is because \( 4\pi \) is a multiple of \( 2\pi \) and we can subtract \( 4\pi \) to bring it within the principal range of the cosine function. 2. **Use the property of cosine**: \[ \cos(\frac{31\pi}{9}) = \cos(4\pi - \frac{5\pi}{9}) = \cos(\frac{5\pi}{9}) \] Thus, \[ \cos^{-1}(\cos(\frac{31\pi}{9})) = \cos^{-1}(\cos(\frac{5\pi}{9})) = \frac{5\pi}{9} \] ### Step 3: Combine the results Now we combine the results from Steps 1 and 2: \[ \sin^{-1}(\sin(-\frac{50\pi}{9})) + \cos^{-1}(\cos(\frac{31\pi}{9})) = \frac{4\pi}{9} + \frac{5\pi}{9} = \pi \] ### Step 4: Find \( \sec(\pi) \) Finally, we need to find: \[ \sec(\pi) = \frac{1}{\cos(\pi)} = \frac{1}{-1} = -1 \] ### Final Answer Thus, the value of the expression is: \[ \sec(\sin^{-1}(\sin(-\frac{50\pi}{9})) + \cos^{-1}(\cos(\frac{31\pi}{9}))) = -1 \] ---

To solve the expression \( \sec(\sin^{-1}(\sin(-\frac{50\pi}{9})) + \cos^{-1}(\cos(\frac{31\pi}{9}))) \), we will break it down into manageable parts. ### Step 1: Simplify \( \sin^{-1}(\sin(-\frac{50\pi}{9})) \) First, we need to simplify \( \sin^{-1}(\sin(-\frac{50\pi}{9})) \). 1. **Convert the angle**: \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(sin((9pi)/4))

Write the value of sin^(-1)(cos(pi/9)) .

The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+tan^(-1)(tan(5pi)/7)+sin^(-1)(cos2) is (17pi)/(42)-2 (b) -2 (-pi)/(21)-2 (d) non eoft h e s e

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

The principal values of cos^(-1)(-sin((7pi)/6)) is

Write the principal value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3))

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

Show that sin^(- 1)(sin((33pi)/7))+cos^(- 1)(cos((46pi)/7))+tan^-1(-tan((13pi)/8))+cot^-1(cot(-(19pi)/8))=(13pi)/7

Find the value of sin(1/4cos^(-1)((-1)/9))