Home
Class 12
MATHS
Maximum value of function f(x)=(sin^(-1)...

Maximum value of function `f(x)=(sin^(-1)(sinx)^(2)-sin^(-1)(sinx)` is:

A

`(pi)/(4)[pi+2]`

B

`(pi)/(4)[pi-2]`

C

`(pi)/(2)[pi+2]`

D

`(pi)/(2)[pi-2]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = \sin^{-1}(\sin x)^2 - \sin^{-1}(\sin x) \), we can follow these steps: ### Step 1: Substitute \( t \) Let \( t = \sin^{-1}(\sin x) \). Then, we can rewrite the function as: \[ f(x) = t^2 - t \] ### Step 2: Complete the square To maximize \( f(x) \), we can complete the square for the expression \( t^2 - t \): \[ f(x) = t^2 - t = \left(t - \frac{1}{2}\right)^2 - \frac{1}{4} \] ### Step 3: Determine the range of \( t \) Next, we need to find the maximum and minimum values of \( t = \sin^{-1}(\sin x) \). The function \( \sin^{-1}(\sin x) \) takes values in the interval: \[ \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] ### Step 4: Find the maximum value of \( t \) The maximum value of \( t \) is \( \frac{\pi}{2} \) and the minimum value is \( -\frac{\pi}{2} \). ### Step 5: Substitute the maximum value of \( t \) To find the maximum value of \( f(x) \), substitute \( t = \frac{\pi}{2} \) into the completed square expression: \[ f(x) = \left(\frac{\pi}{2} - \frac{1}{2}\right)^2 - \frac{1}{4} \] ### Step 6: Simplify the expression Calculating the expression: \[ f(x) = \left(\frac{\pi}{2} - \frac{1}{2}\right)^2 - \frac{1}{4} = \left(\frac{\pi - 1}{2}\right)^2 - \frac{1}{4} \] \[ = \frac{(\pi - 1)^2}{4} - \frac{1}{4} \] \[ = \frac{(\pi - 1)^2 - 1}{4} \] ### Step 7: Final expression Thus, the maximum value of the function \( f(x) \) is: \[ f(x) = \frac{\pi^2 - 2\pi}{4} \] ### Conclusion The maximum value of the function \( f(x) = \sin^{-1}(\sin x)^2 - \sin^{-1}(\sin x) \) is: \[ \frac{\pi^2 - 2\pi}{4} \]

To find the maximum value of the function \( f(x) = \sin^{-1}(\sin x)^2 - \sin^{-1}(\sin x) \), we can follow these steps: ### Step 1: Substitute \( t \) Let \( t = \sin^{-1}(\sin x) \). Then, we can rewrite the function as: \[ f(x) = t^2 - t \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(sinx)=x if

The function f(x)=sin^(-1)(sinx) , is

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The function f(x)=log((1+sinx)/(1-sinx)) is

The function f(x)=((1)/(2))^(sinx) , is

Find the range of the function " " f(x)=(sin^(2)x+sinx-1)/(sin^(2)x-sinx+2) .

The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(sin^(2)x+sinx+1) is

The sum of the maximum and minimum values of the function f(x)=1/(1+(2cosx-4sinx)^2)i s

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is