Home
Class 12
MATHS
The solution of sin^(-1)|sin x|=sqrt(sin...

The solution of `sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|)` is

A

`n pi pm 1, n pi, n in Z`

B

`n pi+1, n pi, n in Z`

C

`n pi-1, n pi, n in Z`

D

`2n pi+1, n pi, n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}|\sin x| = \sqrt{\sin^{-1}|\sin x|} \), we will follow these steps: ### Step 1: Let \( y = \sin^{-1}|\sin x| \) We start by substituting \( y \) for \( \sin^{-1}|\sin x| \). This gives us the equation: \[ y = \sqrt{y} \] ### Step 2: Square both sides Next, we square both sides of the equation to eliminate the square root: \[ y^2 = y \] ### Step 3: Rearrange the equation Rearranging the equation gives us: \[ y^2 - y = 0 \] ### Step 4: Factor the equation Factoring the equation results in: \[ y(y - 1) = 0 \] ### Step 5: Solve for \( y \) Setting each factor to zero gives us the solutions: \[ y = 0 \quad \text{or} \quad y = 1 \] ### Step 6: Substitute back to find \( x \) Now we substitute back to find \( x \) using \( y = \sin^{-1}|\sin x| \). 1. For \( y = 0 \): \[ \sin^{-1}|\sin x| = 0 \implies |\sin x| = 0 \implies \sin x = 0 \] The solutions for \( \sin x = 0 \) are: \[ x = n\pi, \quad n \in \mathbb{Z} \] 2. For \( y = 1 \): \[ \sin^{-1}|\sin x| = 1 \implies |\sin x| = \sin(1) \] The solutions for \( |\sin x| = \sin(1) \) are: \[ x = n\pi + (-1)^k \cdot 1, \quad n \in \mathbb{Z}, \quad k = 0, 1 \] ### Final Solution Combining both sets of solutions, we have: \[ x = n\pi \quad \text{or} \quad x = n\pi + 1 \quad \text{or} \quad x = n\pi - 1, \quad n \in \mathbb{Z} \]

To solve the equation \( \sin^{-1}|\sin x| = \sqrt{\sin^{-1}|\sin x|} \), we will follow these steps: ### Step 1: Let \( y = \sin^{-1}|\sin x| \) We start by substituting \( y \) for \( \sin^{-1}|\sin x| \). This gives us the equation: \[ y = \sqrt{y} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of sin^(-1)x-sin^(-1)2x=pm(pi)/(3) is

The number of solutions of sin^(-1)x+sin^(-1)(1+x)=cos^(-1)x is/are :

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1)1/(sqrt(1+x))

STATEMENT-1 : The solution of sin^-1 6x+sin^-1 6sqrt3x=pi/2 is , x= +- 1/12. and STATEMENT - 2 As, sin^-1 x is defined for |x| <= 1.

The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) is

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is