Home
Class 12
MATHS
Evaluate: sin(1/4sin^(- 1)(sqrt 63/8)i s...

Evaluate: `sin(1/4sin^(- 1)(sqrt 63/8)i s`

A

`(1)/(2)`

B

`(1)/(3)`

C

`(1)/(2sqrt(2))`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin\left(\frac{1}{4} \sin^{-1}\left(\frac{\sqrt{63}}{8}\right)\right) \), we will follow these steps: ### Step 1: Let \( \theta = \sin^{-1}\left(\frac{\sqrt{63}}{8}\right) \) This implies that \( \sin \theta = \frac{\sqrt{63}}{8} \). ### Step 2: Construct a right triangle We can represent \( \sin \theta \) in terms of a right triangle. In this triangle: - The opposite side to angle \( \theta \) is \( \sqrt{63} \). - The hypotenuse is \( 8 \). ### Step 3: Find the adjacent side using the Pythagorean theorem Using the Pythagorean theorem: \[ \text{adjacent}^2 + \text{opposite}^2 = \text{hypotenuse}^2 \] Let the length of the adjacent side be \( x \): \[ x^2 + (\sqrt{63})^2 = 8^2 \] \[ x^2 + 63 = 64 \] \[ x^2 = 64 - 63 = 1 \] \[ x = 1 \] ### Step 4: Calculate \( \cos \theta \) Now that we have the lengths of all sides, we can find \( \cos \theta \): \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{8} \] ### Step 5: Use the half-angle formula for \( \cos\left(\frac{\theta}{2}\right) \) We can use the half-angle formula: \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 + \frac{1}{8}}{2}} = \sqrt{\frac{\frac{9}{8}}{2}} = \sqrt{\frac{9}{16}} = \frac{3}{4} \] ### Step 6: Use the half-angle formula for \( \sin\left(\frac{\theta}{2}\right) \) Now, we can find \( \sin\left(\frac{\theta}{2}\right) \) using: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - \frac{1}{8}}{2}} = \sqrt{\frac{\frac{7}{8}}{2}} = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4} \] ### Step 7: Find \( \sin\left(\frac{1}{4} \sin^{-1}\left(\frac{\sqrt{63}}{8}\right)\right) \) Now, we need to find \( \sin\left(\frac{\theta}{4}\right) \). We can use the half-angle formula again: \[ \sin\left(\frac{\theta}{4}\right) = \sqrt{\frac{1 - \cos\left(\frac{\theta}{2}\right)}{2}} = \sqrt{\frac{1 - \frac{3}{4}}{2}} = \sqrt{\frac{\frac{1}{4}}{2}} = \sqrt{\frac{1}{8}} = \frac{1}{2\sqrt{2}} \] ### Final Answer Thus, the value of \( \sin\left(\frac{1}{4} \sin^{-1}\left(\frac{\sqrt{63}}{8}\right)\right) \) is: \[ \frac{1}{2\sqrt{2}} \]

To evaluate the expression \( \sin\left(\frac{1}{4} \sin^{-1}\left(\frac{\sqrt{63}}{8}\right)\right) \), we will follow these steps: ### Step 1: Let \( \theta = \sin^{-1}\left(\frac{\sqrt{63}}{8}\right) \) This implies that \( \sin \theta = \frac{\sqrt{63}}{8} \). ### Step 2: Construct a right triangle We can represent \( \sin \theta \) in terms of a right triangle. In this triangle: - The opposite side to angle \( \theta \) is \( \sqrt{63} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

Evaluate: sin(3\ sin^(-1)0. 4)

Evaluate : sin[pi/2 - sin^(-1) (- sqrt(3)/2)]

Evaluate : sin^-1 (- sqrt(3)/2)

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))\ dx

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

Evaluate: (i) int(xsin^(-1)x^2)/(sqrt(1-x^4))\ dx (ii) intx^3sin(x^4+1)\ dx

Evaluate: (i) int((sin^(-1)x)^3)/(sqrt(1-x^2))\ dx (ii) int(sin(2+3logx)/x\ dx