Home
Class 12
MATHS
Which of the following is not true ?...

Which of the following is not true ?

A

`sin cos^(-1)tan cot^(-1)x=sqrt(1-(1)/(x^(2)))`

B

`cos tan^(-1)cot sin^(-1)x = x`

C

`tan cot^(-1)sin cos^(-1)x = (1)/(sqrt(1-x^(2)))`

D

`cot sin^(-1)cos tan^(-1)x=sqrt(1-x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of determining which of the given statements is not true, we will analyze each option step by step. ### Step-by-Step Solution: **Option 1: \( \sin(\cos^{-1}(10 \cot^{-1}(x))) \)** 1. **Use the identity**: \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). - This gives us: \[ \sin(\cos^{-1}(10 \tan^{-1}(\frac{1}{x}))) \] 2. **Apply the identity**: \( \cos^{-1}(y) = \sin^{-1}(\sqrt{1 - y^2}) \). - Hence, we have: \[ \sin(\sin^{-1}(\sqrt{1 - (10 \tan^{-1}(\frac{1}{x}))^2})) = \sqrt{1 - (10 \tan^{-1}(\frac{1}{x}))^2} \] - This expression simplifies correctly, confirming that this option is true. **Option 2: \( \cos(10^{-1}(\cot(\sin^{-1}(x)))) = x \)** 1. **Use the identity**: \( \sin^{-1}(x) = \cot^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right) \). - This gives us: \[ \cos(10^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right)) \] 2. **Apply the identity**: \( \tan^{-1}(y) = \cos^{-1}\left(\frac{1}{\sqrt{1+y^2}}\right) \). - Thus, we have: \[ \cos\left(\cos^{-1}\left(\frac{x}{\sqrt{x^2 + (1 - x^2)}}\right)\right) = x \] - This expression holds true, confirming that this option is also true. **Option 3: \( \tan(\cot^{-1}(\sin(\cos^{-1}(x)))) \)** 1. **Use the identity**: \( \cos^{-1}(x) = \sin^{-1}(\sqrt{1 - x^2}) \). - This gives us: \[ \tan(\cot^{-1}(\sin(\sin^{-1}(\sqrt{1 - x^2})))) \] 2. **Apply the identity**: \( \cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right) \). - Thus, we have: \[ \tan\left(\tan^{-1}\left(\frac{1}{\sqrt{1 - x^2}}\right)\right) = \frac{1}{\sqrt{1 - x^2}} \] - This expression is also true. **Option 4: \( \cot(\sin^{-1}(\cos(\tan^{-1}(x)))) \)** 1. **Use the identity**: \( \tan^{-1}(x) = \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) \). - This gives us: \[ \cot(\sin^{-1}(\cos(\cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)))) \] 2. **Apply the identity**: \( \sin^{-1}(y) = \cot^{-1}\left(\frac{\sqrt{1-y^2}}{y}\right) \). - This leads to: \[ \cot(\cot^{-1}(x)) = x \] - However, the expression in the option states it equals \( \sqrt{1 - x^2} \), which is not true. ### Conclusion: The statement that is not true is **Option 4**.

To solve the problem of determining which of the given statements is not true, we will analyze each option step by step. ### Step-by-Step Solution: **Option 1: \( \sin(\cos^{-1}(10 \cot^{-1}(x))) \)** 1. **Use the identity**: \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). - This gives us: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is a true?

Which of the following is/are true ?

Which of the following is/are true ?

Which of the following is/are true ?

Which of the following is/are true?

Which of the following must be true?

Which of the following is a true Amphibian ?

Which of the following is a true statement ?

Which of the following is/are true?

Which of the following is a true match?