Home
Class 12
MATHS
The algebraic expression for f(x)=tan(si...

The algebraic expression for `f(x)=tan(sin^(-1)(cos("tan"^(-1)(x)/(2))))` is

A

`(2)/(x)`

B

`(x)/(2)`

C

`(1)/(x)`

D

`(2)/(|x|)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the algebraic expression for the function \( f(x) = \tan\left(\sin^{-1}\left(\cos\left(\tan^{-1}\left(\frac{x}{2}\right)\right)\right)\right) \), we will follow these steps: ### Step 1: Set up the problem We start with the function: \[ f(x) = \tan\left(\sin^{-1}\left(\cos\left(\tan^{-1}\left(\frac{x}{2}\right)\right)\right)\right) \] ### Step 2: Let \( \theta = \tan^{-1}\left(\frac{x}{2}\right) \) From this, we can express \( \tan \theta \): \[ \tan \theta = \frac{x}{2} \] Using the identity \( \tan \theta = \frac{\text{opposite}}{\text{adjacent}} \), we can consider a right triangle where the opposite side is \( x \) and the adjacent side is \( 2 \). ### Step 3: Find the hypotenuse Using the Pythagorean theorem, we find the hypotenuse \( h \): \[ h = \sqrt{x^2 + 2^2} = \sqrt{x^2 + 4} \] ### Step 4: Find \( \cos \theta \) Now, we can find \( \cos \theta \): \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{2}{\sqrt{x^2 + 4}} \] ### Step 5: Substitute into \( f(x) \) Now we substitute \( \cos \theta \) into the function: \[ f(x) = \tan\left(\sin^{-1}\left(\frac{2}{\sqrt{x^2 + 4}}\right)\right) \] ### Step 6: Let \( \phi = \sin^{-1}\left(\frac{2}{\sqrt{x^2 + 4}}\right) \) From this, we can express \( \sin \phi \): \[ \sin \phi = \frac{2}{\sqrt{x^2 + 4}} \] ### Step 7: Find \( \cos \phi \) Using the Pythagorean identity: \[ \cos \phi = \sqrt{1 - \sin^2 \phi} = \sqrt{1 - \left(\frac{2}{\sqrt{x^2 + 4}}\right)^2} = \sqrt{1 - \frac{4}{x^2 + 4}} = \sqrt{\frac{x^2}{x^2 + 4}} = \frac{|x|}{\sqrt{x^2 + 4}} \] ### Step 8: Find \( \tan \phi \) Now we can find \( \tan \phi \): \[ \tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{\frac{2}{\sqrt{x^2 + 4}}}{\frac{|x|}{\sqrt{x^2 + 4}}} = \frac{2}{|x|} \] ### Step 9: Final expression for \( f(x) \) Thus, the algebraic expression for \( f(x) \) is: \[ f(x) = \frac{2}{|x|} \] ### Summary The final answer is: \[ f(x) = \frac{2}{|x|} \]

To find the algebraic expression for the function \( f(x) = \tan\left(\sin^{-1}\left(\cos\left(\tan^{-1}\left(\frac{x}{2}\right)\right)\right)\right) \), we will follow these steps: ### Step 1: Set up the problem We start with the function: \[ f(x) = \tan\left(\sin^{-1}\left(\cos\left(\tan^{-1}\left(\frac{x}{2}\right)\right)\right)\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin (tan ^(-1)2x)

sin^-1(cos x)+tan ^-1(cot x)

If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) , then

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Find the value of expression: sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

sin(cot^(-1)(tan(tan^(-1)x))),"x" in (0," 1]