Home
Class 12
MATHS
The value of x satisfying the equation c...

The value of x satisfying the equation `cos^(-1)3x+sin^(-1)2x=pi` is

A

`x=(1)/(sqrt(3))`

B

`x=(-1)/(sqrt(3))`

C

`x=(-1)/(sqrt(3))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1}(3x) + \sin^{-1}(2x) = \pi \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos^{-1}(3x) + \sin^{-1}(2x) = \pi \] We can express \( \sin^{-1}(2x) \) in terms of \( \cos^{-1}(3x) \): \[ \sin^{-1}(2x) = \pi - \cos^{-1}(3x) \] ### Step 2: Use the identity for sine Using the identity \( \sin(\pi - \theta) = \sin(\theta) \), we can write: \[ 2x = \sin(\pi - \cos^{-1}(3x)) = \sin(\cos^{-1}(3x)) \] ### Step 3: Express sine in terms of cosine From the identity \( \sin(\cos^{-1}(y)) = \sqrt{1 - y^2} \), we have: \[ \sin(\cos^{-1}(3x)) = \sqrt{1 - (3x)^2} = \sqrt{1 - 9x^2} \] Thus, we can rewrite the equation as: \[ 2x = \sqrt{1 - 9x^2} \] ### Step 4: Square both sides To eliminate the square root, we square both sides: \[ (2x)^2 = (1 - 9x^2) \] This simplifies to: \[ 4x^2 = 1 - 9x^2 \] ### Step 5: Rearrange the equation Rearranging gives: \[ 4x^2 + 9x^2 = 1 \] \[ 13x^2 = 1 \] ### Step 6: Solve for \( x^2 \) Dividing both sides by 13, we find: \[ x^2 = \frac{1}{13} \] ### Step 7: Find \( x \) Taking the square root of both sides, we get: \[ x = \pm \frac{1}{\sqrt{13}} \] ### Step 8: Determine valid solutions Since \( \cos^{-1}(3x) \) and \( \sin^{-1}(2x) \) must be defined, we check the ranges: - For \( \cos^{-1}(3x) \) to be defined, \( |3x| \leq 1 \) implies \( |x| \leq \frac{1}{3} \). - For \( \sin^{-1}(2x) \) to be defined, \( |2x| \leq 1 \) implies \( |x| \leq \frac{1}{2} \). Since \( \frac{1}{\sqrt{13}} \approx 0.277 \) is less than both \( \frac{1}{3} \) and \( \frac{1}{2} \), both solutions \( x = \frac{1}{\sqrt{13}} \) and \( x = -\frac{1}{\sqrt{13}} \) are valid. ### Final Answer Thus, the values of \( x \) satisfying the equation are: \[ x = \pm \frac{1}{\sqrt{13}} \] ---

To solve the equation \( \cos^{-1}(3x) + \sin^{-1}(2x) = \pi \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos^{-1}(3x) + \sin^{-1}(2x) = \pi \] We can express \( \sin^{-1}(2x) \) in terms of \( \cos^{-1}(3x) \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

The number of real values of x satisfying the equation 3 sin^(-1)x +pi x-pi=0 is/are :

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is : (a) "cos"(pi)/(5) (b) "cos"(pi)/(4) (c) "cos"(pi)/(8) (d) "cos"(pi)/(12)

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

The product of all values of x satisfying the equation sin^(-1)cos((2x^2+10|x|+4)/(x^2+5|x|+3))=cot(cot^(-1)((2-18|x|)/(9|x|)))+pi/2 is (a) 9 (b) -9 (c) -3 (d) -1

The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2 is -

The values of x satisfying the system of equation 2^("sin" x - "cos"y) = 1, 16^("sin"^(2)x + "cos"^(2)y) =4 are given by

Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))

Samllest positive angle satisfying the equation cos^(2)x+cos^(2) 2x+cos^(2)3x=1 , is