Home
Class 12
MATHS
The number of roots of the equation sin^...

The number of roots of the equation `sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x)` is (a) 0 (b) 1 (c) 2 (d) 3

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

`sin^(-1) x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x)`
`rArr (sin^(-1)x-cos^(-1)x)((sin^(-1)x.cos^(-1)x+1))/(sin^(-1)x.cos^(-1)x)=0`
`rArr sin^(-1)x=cos^(-1)x` or `sin^(-1)x cos^(-1)x+1=0`
`rArr x=(1)/(sqrt(2))` or `sin^(-1)x((pi)/(2)-sin^(-1)x)+1=0`
`rArr x=(1)/(sqrt(2))` or `sin^(-1)x=((pi)/(2)pm sqrt(((pi^(2))/(4)+4)))/(2)`
`rArr x = (1)/(sqrt(2))` or `sin^(-1)x=(pi)/(4)-sqrt((1+(pi^(2))/(16)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of roots of the equation sin^(-1)x-cos^(-1)x=sin^(-1)(5x-3) is/ are

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

The number of solutions of the equation sin^(-1)|x|=|cos^(-1)x| are

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) is