Home
Class 12
MATHS
The sum of all possible values of x sati...

The sum of all possible values of x satisfying the equation `sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2)` is

A

`-2`

B

`-1`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(3x - 4x^3) + \cos^{-1}(4x^3 - 3x) = \frac{\pi}{2} \), we can use the property that \( \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \) for any \( y \). This means that we can rewrite the equation as follows: ### Step 1: Rewrite the equation Using the identity, we can rewrite the equation: \[ \sin^{-1}(3x - 4x^3) = \frac{\pi}{2} - \cos^{-1}(4x^3 - 3x) \] This implies: \[ \sin^{-1}(3x - 4x^3) = \sin^{-1}(- (3x - 4x^3)) \] ### Step 2: Set the arguments equal Since the inverse sine function is one-to-one, we can set the arguments equal: \[ 3x - 4x^3 = - (3x - 4x^3) \] ### Step 3: Simplify the equation This simplifies to: \[ 3x - 4x^3 = -3x + 4x^3 \] Adding \( 3x \) and \( 4x^3 \) to both sides gives: \[ 3x + 3x = 4x^3 + 4x^3 \] This simplifies to: \[ 6x = 8x^3 \] ### Step 4: Rearrange the equation Rearranging gives: \[ 8x^3 - 6x = 0 \] ### Step 5: Factor the equation Factoring out \( 2x \) gives: \[ 2x(4x^2 - 3) = 0 \] ### Step 6: Solve for x Setting each factor to zero gives: 1. \( 2x = 0 \) which implies \( x = 0 \) 2. \( 4x^2 - 3 = 0 \) which implies \( 4x^2 = 3 \) or \( x^2 = \frac{3}{4} \), thus \( x = \pm \frac{\sqrt{3}}{2} \) ### Step 7: List all possible values of x The possible values of \( x \) are: - \( x = 0 \) - \( x = \frac{\sqrt{3}}{2} \) - \( x = -\frac{\sqrt{3}}{2} \) ### Step 8: Find the sum of all possible values of x Now, we sum all the possible values: \[ 0 + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = 0 \] ### Final Answer The sum of all possible values of \( x \) satisfying the equation is: \[ \boxed{0} \]

To solve the equation \( \sin^{-1}(3x - 4x^3) + \cos^{-1}(4x^3 - 3x) = \frac{\pi}{2} \), we can use the property that \( \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \) for any \( y \). This means that we can rewrite the equation as follows: ### Step 1: Rewrite the equation Using the identity, we can rewrite the equation: \[ \sin^{-1}(3x - 4x^3) = \frac{\pi}{2} - \cos^{-1}(4x^3 - 3x) \] This implies: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The sum of all real values of x satisfying the equation (x^(2) -5x+5)^(x^(2)+4x-45)=1 is :

The number of real values of x satisfying the equation 3 sin^(-1)x +pi x-pi=0 is/are :

The sum of all real values of X satisfying the equation (x^2-5x+5)^(x^2 + 4x -60) = 1 is:

The number of real values of x satisfying the equation 3 |x-2| +|1-5x|+4|3x+1|=13 is:

The product of all values of x satisfying the equation sin^(-1)cos((2x^2+10|x|+4)/(x^2+5|x|+3))=cot(cot^(-1)((2-18|x|)/(9|x|)))+pi/2 is (a) 9 (b) -9 (c) -3 (d) -1

Find the sum of all real values of X satisfying the equation (x^2-5x+5)^(x^2 + 4x -60) = 1 .

The product of all values of x satisfying the equation sin^(-1)cos((2x^2+10|x|+4)/(x^2+5|x|+3))=cot(cot^(-1)((2-18|x|)/(9|x|)))+x/2i s 9 (b) -9 (c) -3 (d) -1

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is : (a) "cos"(pi)/(5) (b) "cos"(pi)/(4) (c) "cos"(pi)/(8) (d) "cos"(pi)/(12)