Home
Class 12
MATHS
If maximum and minimum values of |sin^(-...

If maximum and minimum values of `|sin^(-1)x|+|cos^(-1)x|` are Mand m, then M+m is

A

`pi//2`

B

`pi`

C

`2pi`

D

`3pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the maximum and minimum values of the expression \( | \sin^{-1} x | + | \cos^{-1} x | \), we can follow these steps: ### Step 1: Understand the ranges of the functions The functions \( \sin^{-1} x \) and \( \cos^{-1} x \) are defined for \( x \) in the interval \([-1, 1]\). Specifically: - \( \sin^{-1} x \) ranges from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\). - \( \cos^{-1} x \) ranges from \(0\) to \(\pi\). ### Step 2: Analyze the expression in different intervals We will analyze the expression \( | \sin^{-1} x | + | \cos^{-1} x | \) in two intervals: 1. For \( x \in [0, 1] \) 2. For \( x \in [-1, 0] \) #### Case 1: \( x \in [0, 1] \) In this interval: - \( \sin^{-1} x \) is non-negative, so \( | \sin^{-1} x | = \sin^{-1} x \). - \( \cos^{-1} x \) is also non-negative, so \( | \cos^{-1} x | = \cos^{-1} x \). Thus, the expression simplifies to: \[ f(x) = \sin^{-1} x + \cos^{-1} x \] Using the identity \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \), we find: \[ f(x) = \frac{\pi}{2} \] #### Case 2: \( x \in [-1, 0] \) In this interval: - \( \sin^{-1} x \) is negative, so \( | \sin^{-1} x | = -\sin^{-1} x \). - \( \cos^{-1} x \) is non-negative, so \( | \cos^{-1} x | = \cos^{-1} x \). Thus, the expression simplifies to: \[ f(x) = -\sin^{-1} x + \cos^{-1} x \] Using the identity \( \cos^{-1} x = \pi - \sin^{-1}(-x) \), we can rewrite this as: \[ f(x) = -\sin^{-1} x + \pi - \sin^{-1}(-x) = \pi - 2\sin^{-1}(-x) \] Since \( \sin^{-1}(-x) = -\sin^{-1}(x) \), we have: \[ f(x) = \pi + 2\sin^{-1} x \] ### Step 3: Find the maximum and minimum values 1. For \( x \in [0, 1] \), \( f(x) = \frac{\pi}{2} \). 2. For \( x \in [-1, 0] \): - At \( x = -1 \), \( f(-1) = \pi + 2 \cdot (-\frac{\pi}{2}) = 0 \). - At \( x = 0 \), \( f(0) = \pi + 2 \cdot 0 = \pi \). Thus, the minimum value \( m = 0 \) and the maximum value \( M = \pi \). ### Step 4: Calculate \( M + m \) Now, we can find: \[ M + m = \pi + 0 = \pi \] ### Final Answer Therefore, the sum of the maximum and minimum values is: \[ \boxed{\pi} \]

To solve the problem of finding the maximum and minimum values of the expression \( | \sin^{-1} x | + | \cos^{-1} x | \), we can follow these steps: ### Step 1: Understand the ranges of the functions The functions \( \sin^{-1} x \) and \( \cos^{-1} x \) are defined for \( x \) in the interval \([-1, 1]\). Specifically: - \( \sin^{-1} x \) ranges from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\). - \( \cos^{-1} x \) ranges from \(0\) to \(\pi\). ### Step 2: Analyze the expression in different intervals ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(i) Find the maximum and minimum values of sin^(4)x + cos^(2)x and hence or otherwise find the maximum value of sin^(1000)x + cos^(2008)x . (ii) Find the maximum value of cos (cos x).

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

Write the difference between maximum and minimum values of sin^(-1)x for x in [-1,\ 1] .

Find the maximum and minimum values of (sin^(-1)x)^3+(cos^(-1)x)^3, where -1lt=xlt=1.

Find the maximum and minimum values of (sin^(-1)x)^3+(cos^(-1)x)^3, where -1lt=xlt=1.

Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

Let the maximum and minimum value of the expression 2 cos^(2) theta + cos theta + 1 is M and m respectively, then the value of [M/m] is (where [.] is the greatest integer function)

If m and M are the minimum and the maximum values of 4+1/2 sin^2 2x-2cos^4x, x in R then M-m is equal to...

The maximum and minimum values of 6 sin x cos x +4cos2x are respectively

If f(x) = sin^6x+ cos^6 x and M_1 and M_2 , be the maximum and minimum values of f(x) for all values ofx then M_1-M_2 is equal to