Home
Class 12
MATHS
If the function f(x)=sin^(-1)x+cos^(-1)x...

If the function `f(x)=sin^(-1)x+cos^(-1)x` and g(x) are identical, then g(x) can be equal to

A

`sin^(-1)|x|+|cos^(-1)x|`

B

`tan^(-1)x+cot^(-1)x`

C

`|sin^(-1)x|+cos^(-1)|x|`

D

`(sqrt(sin^(-1)x))^(2)+(sqrt(cos^(-1)x))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin^{-1} x + \cos^{-1} x \) and determine what \( g(x) \) can be equal to if they are identical functions. ### Step-by-Step Solution: 1. **Understanding the Function \( f(x) \)**: \[ f(x) = \sin^{-1} x + \cos^{-1} x \] We know from trigonometric identities that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \quad \text{for } x \in [-1, 1] \] Therefore, \( f(x) = \frac{\pi}{2} \) for all \( x \) in the domain \([-1, 1]\). 2. **Identifying the Function \( g(x) \)**: Since \( g(x) \) is said to be identical to \( f(x) \), it must also equal \( \frac{\pi}{2} \) for \( x \in [-1, 1] \). 3. **Examining the Given Options**: We need to check which of the options can also equal \( \frac{\pi}{2} \) for \( x \in [-1, 1] \): - **Option A**: \( \sin^{-1} |x| + \cos^{-1} |x| \) - **Option B**: \( \tan^{-1} x + \cot^{-1} x \) - **Option C**: \( \sin^{-1} |x| + \cos^{-1} |x| \) - **Option D**: \( \sqrt{\sin^{-1} x} + \sqrt{\cos^{-1} x} \) 4. **Evaluating Each Option**: - **Option A**: \[ g(x) = \sin^{-1} |x| + \cos^{-1} |x| = \frac{\pi}{2} \quad \text{for } |x| \in [0, 1] \] This is valid for \( x \in [-1, 1] \). - **Option B**: \[ g(x) = \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \quad \text{for } x > 0 \] This does not hold for all \( x \in [-1, 1] \) since it is undefined for \( x = 0 \) and does not equal \( \frac{\pi}{2} \) for negative values. - **Option C**: This is the same as Option A, hence it also equals \( \frac{\pi}{2} \) for \( x \in [-1, 1] \). - **Option D**: The square roots of inverse sine and cosine do not yield a constant value of \( \frac{\pi}{2} \) for all \( x \in [-1, 1] \). 5. **Conclusion**: The functions \( g(x) \) that are identical to \( f(x) \) are: - Option A: \( \sin^{-1} |x| + \cos^{-1} |x| \) - Option C: \( \sin^{-1} |x| + \cos^{-1} |x| \) Thus, the correct answer is: \[ \text{Option C: } \sin^{-1} |x| + \cos^{-1} |x| \]

To solve the problem, we need to analyze the function \( f(x) = \sin^{-1} x + \cos^{-1} x \) and determine what \( g(x) \) can be equal to if they are identical functions. ### Step-by-Step Solution: 1. **Understanding the Function \( f(x) \)**: \[ f(x) = \sin^{-1} x + \cos^{-1} x \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = sin ^(-1)(cos x) is

Find the values of x in [0,2pi] for which function f(x) = tan^(-1) (tan x) and g(x) = cos^(-1) (cos x) are identical

For which Domain, the functions f(x) = 2x^2-1 and g(x)=1-3x are equal to

if f(x)=x^x,x in (1,infty) and g(x) be inverse function of f(x) then g^(')(x) must be equal to

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

The function f(x)=(x+1)/(x^3+1) can be written as the sum of an even function g(x) and an odd function h(x) . Then the value of |g(0)| is___________

The function f(x)=(x+1)/(x^3+1) can be written as the sum of an even function g(x) and an odd function h(x) . Then the value of |g(0)| is___________

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .