Home
Class 12
MATHS
The value of x satisfying sin^(-1)(sqrt(...

The value of x satisfying `sin^(-1)(sqrt((3x-1)/(25)))+sin^(-1)(sqrt((3x+1)/(25)))=(pi)/(2)` lies in the interval

A

(1,2)

B

(2,3)

C

(3,4)

D

(4,5)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\sqrt{\frac{3x-1}{25}}\right) + \sin^{-1}\left(\sqrt{\frac{3x+1}{25}}\right) = \frac{\pi}{2}, \] we can use the property of inverse trigonometric functions that states: \[ \sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2}. \] ### Step 1: Rewrite the equation using the property Using the property mentioned, we can rewrite the equation as: \[ \sin^{-1}\left(\sqrt{\frac{3x-1}{25}}\right) = \cos^{-1}\left(\sqrt{\frac{3x+1}{25}}\right). \] ### Step 2: Convert cosine inverse to sine inverse We can convert the cosine inverse to sine inverse: \[ \sin^{-1}\left(\sqrt{\frac{3x-1}{25}}\right) = \sin^{-1}\left(\sqrt{1 - \left(\sqrt{\frac{3x+1}{25}}\right)^2}\right). \] ### Step 3: Simplify the right-hand side Now, we simplify the right-hand side: \[ \sqrt{1 - \left(\sqrt{\frac{3x+1}{25}}\right)^2} = \sqrt{1 - \frac{3x+1}{25}} = \sqrt{\frac{25 - (3x + 1)}{25}} = \sqrt{\frac{24 - 3x}{25}}. \] ### Step 4: Set the two sides equal Now we have: \[ \sqrt{\frac{3x-1}{25}} = \sqrt{\frac{24 - 3x}{25}}. \] ### Step 5: Square both sides Squaring both sides gives: \[ \frac{3x-1}{25} = \frac{24 - 3x}{25}. \] ### Step 6: Eliminate the denominator Multiplying both sides by 25: \[ 3x - 1 = 24 - 3x. \] ### Step 7: Solve for x Now, we can solve for \(x\): \[ 3x + 3x = 24 + 1, \] \[ 6x = 25, \] \[ x = \frac{25}{6}. \] ### Step 8: Determine the interval Now we need to check if this value of \(x\) lies in the specified interval. Calculating \( \frac{25}{6} \): \[ \frac{25}{6} \approx 4.1667. \] This value lies in the interval \( (4, 5) \). ### Final Answer Thus, the value of \(x\) satisfying the equation lies in the interval \( (4, 5) \). ---

To solve the equation \[ \sin^{-1}\left(\sqrt{\frac{3x-1}{25}}\right) + \sin^{-1}\left(\sqrt{\frac{3x+1}{25}}\right) = \frac{\pi}{2}, \] we can use the property of inverse trigonometric functions that states: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

Value of x satisfying tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))

The set of all real values of x satisfying sin^(-1)sqrt(x)lt(pi)/(4) , is

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))