Home
Class 12
MATHS
The number of integral values in the ran...

The number of integral values in the range of the function `f(x)=sin^(-1)x-cot^(-1)x+x^(2)+2x +6` is

A

10

B

11

C

12

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of integral values in the range of the function \( f(x) = \sin^{-1}(x) - \cot^{-1}(x) + x^2 + 2x + 6 \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \sin^{-1}(x) - \cot^{-1}(x) + x^2 + 2x + 6 \] We can rewrite \( \cot^{-1}(x) \) as: \[ \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \] Thus, we can express \( f(x) \) as: \[ f(x) = \sin^{-1}(x) + \tan^{-1}(x) - \frac{\pi}{2} + x^2 + 2x + 6 \] ### Step 2: Simplify the quadratic part Next, we can simplify the quadratic expression \( x^2 + 2x + 6 \): \[ x^2 + 2x + 6 = (x + 1)^2 + 5 \] So, we can rewrite \( f(x) \) as: \[ f(x) = \sin^{-1}(x) + \tan^{-1}(x) - \frac{\pi}{2} + (x + 1)^2 + 5 \] ### Step 3: Determine the domain The domain of \( \sin^{-1}(x) \) is \( [-1, 1] \). Therefore, the domain of \( f(x) \) is also \( [-1, 1] \). ### Step 4: Analyze the behavior of the function Since \( \sin^{-1}(x) \) and \( \tan^{-1}(x) \) are both increasing functions on the interval \( [-1, 1] \), and \( (x + 1)^2 + 5 \) is also increasing, we conclude that \( f(x) \) is an increasing function on the interval \( [-1, 1] \). ### Step 5: Calculate the endpoints of the function Now we will calculate \( f(-1) \) and \( f(1) \): 1. **Calculate \( f(-1) \)**: \[ f(-1) = \sin^{-1}(-1) - \cot^{-1}(-1) + (-1)^2 + 2(-1) + 6 \] \[ = -\frac{\pi}{2} - \left(\frac{\pi}{2} - \tan^{-1}(-1)\right) + 1 - 2 + 6 \] \[ = -\frac{\pi}{2} - \frac{\pi}{2} + \frac{\pi}{4} + 5 \] \[ = -\pi + \frac{\pi}{4} + 5 = -\frac{4\pi}{4} + \frac{\pi}{4} + 5 = -\frac{3\pi}{4} + 5 \] 2. **Calculate \( f(1) \)**: \[ f(1) = \sin^{-1}(1) - \cot^{-1}(1) + (1)^2 + 2(1) + 6 \] \[ = \frac{\pi}{2} - \frac{\pi}{4} + 1 + 2 + 6 \] \[ = \frac{\pi}{2} - \frac{\pi}{4} + 9 = \frac{2\pi}{4} - \frac{\pi}{4} + 9 = \frac{\pi}{4} + 9 \] ### Step 6: Find the range of \( f(x) \) Now we have: \[ f(-1) = -\frac{3\pi}{4} + 5 \quad \text{and} \quad f(1) = \frac{\pi}{4} + 9 \] To find the range of \( f(x) \): - Lower bound: \( -\frac{3\pi}{4} + 5 \) - Upper bound: \( \frac{\pi}{4} + 9 \) ### Step 7: Calculate the range numerically Using approximate values for \( \pi \approx 3.14 \): - Lower bound: \( -\frac{3 \times 3.14}{4} + 5 \approx -2.355 + 5 \approx 2.645 \) - Upper bound: \( \frac{3.14}{4} + 9 \approx 0.785 + 9 \approx 9.785 \) ### Step 8: Count the integral values The range of \( f(x) \) is approximately \( [2.645, 9.785] \). The integral values in this range are \( 3, 4, 5, 6, 7, 8, 9 \). Thus, the number of integral values is: \[ \text{Count} = 9 - 3 + 1 = 7 \] ### Final Answer The number of integral values in the range of the function \( f(x) \) is \( 7 \). ---

To find the number of integral values in the range of the function \( f(x) = \sin^{-1}(x) - \cot^{-1}(x) + x^2 + 2x + 6 \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \sin^{-1}(x) - \cot^{-1}(x) + x^2 + 2x + 6 \] We can rewrite \( \cot^{-1}(x) \) as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=(x+1)/(x-2) is

What is the range of the function f(x)=5-6sin(pix+1) ?

The range of the function : f(x)=tan^(- 1)x+1/2sin^(- 1)x

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

The range of the function f(x)=3|sin x|-2|cos x| is :

Find the range of the function f(x)=((1+x+x^2)(1+x^4))/x^3

The range of the function sin^(-1)((x^(2))/(1+x^(2))) is

Integrate the functions (sin^(-1)x)^2