Home
Class 12
MATHS
If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1...

If `sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3`, then

A

maximum value of `x^(2)+y^(2)` is `(49)/(3)`

B

maximum value of `x^(2)+y^(2)` is 4

C

minimum value of `x^(2)+y^(2)` is `(1)/(3)`

D

minimum value of `x^(2)+y^(2)` is 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{\sqrt{x}}{2}\right) + \sin^{-1}\left(\sqrt{1 - \frac{x}{4}}\right) + \tan^{-1}(y) = \frac{2\pi}{3} \), we will follow these steps: ### Step 1: Simplify the equation We can rewrite the equation as: \[ \sin^{-1}\left(\frac{\sqrt{x}}{2}\right) + \sin^{-1}\left(\sqrt{1 - \frac{x}{4}}\right) + \tan^{-1}(y) = \frac{2\pi}{3} \] ### Step 2: Use the identity for sine and cosine We know that: \[ \sin^{-1}(a) + \sin^{-1}(b) + \tan^{-1}(c) = \frac{\pi}{2} \text{ if } a^2 + b^2 + c^2 = 1 \] Here, we can use the identity: \[ \sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2} \] Thus, we can express \( \sin^{-1}\left(\frac{\sqrt{x}}{2}\right) + \cos^{-1}\left(\frac{\sqrt{x}}{2}\right) = \frac{\pi}{2} \). ### Step 3: Substitute and simplify Substituting this into our equation gives: \[ \frac{\pi}{2} + \tan^{-1}(y) = \frac{2\pi}{3} \] ### Step 4: Isolate \( \tan^{-1}(y) \) Now, we can isolate \( \tan^{-1}(y) \): \[ \tan^{-1}(y) = \frac{2\pi}{3} - \frac{\pi}{2} \] Calculating the right-hand side: \[ \tan^{-1}(y) = \frac{2\pi}{3} - \frac{3\pi}{6} = \frac{4\pi}{6} - \frac{3\pi}{6} = \frac{\pi}{6} \] ### Step 5: Solve for \( y \) Taking the tangent of both sides: \[ y = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] ### Step 6: Find the values of \( x \) Now we need to find \( x \) such that: \[ \sin^{-1}\left(\frac{\sqrt{x}}{2}\right) + \sin^{-1}\left(\sqrt{1 - \frac{x}{4}}\right) = \frac{\pi}{2} \] This implies: \[ \frac{\sqrt{x}}{2} = \sqrt{1 - \frac{x}{4}} \] Squaring both sides: \[ \frac{x}{4} = 1 - \frac{x}{4} \] Adding \( \frac{x}{4} \) to both sides: \[ \frac{x}{4} + \frac{x}{4} = 1 \] \[ \frac{x}{2} = 1 \implies x = 2 \] ### Step 7: Final values We have found: - \( x = 2 \) - \( y = \frac{1}{\sqrt{3}} \) ### Summary The values of \( x \) and \( y \) that satisfy the original equation are: \[ x = 2, \quad y = \frac{1}{\sqrt{3}} \]

To solve the equation \( \sin^{-1}\left(\frac{\sqrt{x}}{2}\right) + \sin^{-1}\left(\sqrt{1 - \frac{x}{4}}\right) + \tan^{-1}(y) = \frac{2\pi}{3} \), we will follow these steps: ### Step 1: Simplify the equation We can rewrite the equation as: \[ \sin^{-1}\left(\frac{\sqrt{x}}{2}\right) + \sin^{-1}\left(\sqrt{1 - \frac{x}{4}}\right) + \tan^{-1}(y) = \frac{2\pi}{3} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that "sin"^(-1)(sqrt(3))/2+"tan"^(-1)1/(sqrt(3))=(2pi)/3

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

If sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x is equal to

Evaluate: tan^(- 1)(-1/(sqrt(3)))+tan^(- 1)(-sqrt(3))+tan^(- 1)(sin(-pi/2))

Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin((-pi)/(2))] .

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Find the principal value of each of the following: sin^(-1)((sqrt(3)+1)/(2sqrt(2))) (ii) sin^(-1)(cos(pi/4)) (iii) sin^(-1)(tan((5pi)/4))

If tan^(-1) sqrt((1-sqrt(x))/(1+sqrt(x))) = (pi)/(4)-(alpha)/(2) , then express tan^(2)alpha in terms of x.

If x=2cos^(-1)(1/2)+sin^(-1)(1/(sqrt(2)))+tan^(-1)(sqrt(3))\ a n d\ y=cos(1/2sin^(-1)(sin(x/2))) then which of the following statement holds good? a. y=cos((3pi)/16) b. y=cos((5pi)/16) c. x=4cos^(-1)y d. none of these