Home
Class 12
MATHS
cos^(- 1)sqrt((a-x)/(a-b))=sin^(- 1)sqrt...

`cos^(- 1)sqrt((a-x)/(a-b))=sin^(- 1)sqrt((x-b)/(a-b))` is possible ,if

A

`a gt x gt b`

B

`a lt x lt b`

C

`a = x = b`

D

`a gt b` and x takes any value

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1} \sqrt{\frac{a-x}{a-b}} = \sin^{-1} \sqrt{\frac{x-b}{a-b}} \), we need to analyze the conditions under which this equality holds true. ### Step-by-Step Solution: 1. **Understanding the Functions**: The equation involves the inverse cosine and inverse sine functions. We know that: \[ \cos^{-1}(y) + \sin^{-1}(y) = \frac{\pi}{2} \] for \( y \) in the range \([0, 1]\). This means that if we set: \[ y = \sqrt{\frac{x-b}{a-b}} \] then: \[ \cos^{-1} \sqrt{\frac{a-x}{a-b}} = \frac{\pi}{2} - \sin^{-1} \sqrt{\frac{x-b}{a-b}} \] 2. **Setting Up the Inequalities**: For the inverse trigonometric functions to be defined, we need: \[ 0 \leq \sqrt{\frac{a-x}{a-b}} \leq 1 \] and \[ 0 \leq \sqrt{\frac{x-b}{a-b}} \leq 1 \] 3. **Analyzing the First Inequality**: From \( 0 \leq \sqrt{\frac{a-x}{a-b}} \leq 1 \): - The left side gives us \( a-x \geq 0 \) or \( a \geq x \). - The right side gives us \( a-x \leq a-b \) or \( x \leq b \). Thus, we have: \[ b \leq x \leq a \] 4. **Analyzing the Second Inequality**: From \( 0 \leq \sqrt{\frac{x-b}{a-b}} \leq 1 \): - The left side gives us \( x-b \geq 0 \) or \( x \geq b \). - The right side gives us \( x-b \leq a-b \) or \( x \leq a \). Thus, we have: \[ b \leq x \leq a \] 5. **Combining the Results**: From both inequalities, we conclude that: \[ b \leq x \leq a \] ### Conclusion: The equation \( \cos^{-1} \sqrt{\frac{a-x}{a-b}} = \sin^{-1} \sqrt{\frac{x-b}{a-b}} \) is possible if \( b \leq x \leq a \).

To solve the equation \( \cos^{-1} \sqrt{\frac{a-x}{a-b}} = \sin^{-1} \sqrt{\frac{x-b}{a-b}} \), we need to analyze the conditions under which this equality holds true. ### Step-by-Step Solution: 1. **Understanding the Functions**: The equation involves the inverse cosine and inverse sine functions. We know that: \[ \cos^{-1}(y) + \sin^{-1}(y) = \frac{\pi}{2} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

Find : int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx ,x in [0,1]

If y=sqrt((a-x)(x-b))- (a-b)tan^(-1)sqrt((a-x)/(x-b)),t h e n d(dy)/(dx) is equal to'

If tanx=b/a , then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to (a) 2sinx//sqrt(sin2x) (b) 2cosx//sqrt(cos2x) (c) 2cosx//sqrt(sin2x) (d) 2sinx//sqrt(cos2x)

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

If the value of x satisfying the equation sin^(-1)sqrt(1-x^2)=tan^(-1)sqrt(2/x-1) is a/b (where a&b are coprime), then the value of a^2+b^2 is a. 7 b. 5 c. 3 d. 1

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))\ dx

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C