Home
Class 12
MATHS
The value(s) of x satisfying tan^(-1)(x+...

The value(s) of `x` satisfying `tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5)` may be

A

`-2`

B

`-1`

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(x+3) - \tan^{-1}(x-3) = \sin^{-1}\left(\frac{3}{5}\right) \), we will follow these steps: ### Step 1: Evaluate \( \sin^{-1}\left(\frac{3}{5}\right) \) We know that \( \sin^{-1}\left(\frac{3}{5}\right) \) gives us an angle \( \theta \) such that \( \sin(\theta) = \frac{3}{5} \). We can find the corresponding value of \( \tan(\theta) \) using the Pythagorean theorem. Let \( \sin(\theta) = \frac{3}{5} \). Then, we can find \( \cos(\theta) \): \[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] Now, we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 2: Use the tangent subtraction formula The formula for the difference of two inverse tangents is: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab}\right) \] Applying this to our equation: \[ \tan^{-1}(x+3) - \tan^{-1}(x-3) = \tan^{-1}\left(\frac{(x+3) - (x-3)}{1 + (x+3)(x-3)}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{6}{1 + (x^2 - 9)}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 3: Set the arguments equal Since the tangent function is one-to-one, we can set the arguments equal: \[ \frac{6}{1 + x^2 - 9} = \frac{3}{4} \] This simplifies to: \[ \frac{6}{x^2 - 8} = \frac{3}{4} \] ### Step 4: Cross-multiply and solve for \( x^2 \) Cross-multiplying gives: \[ 6 \cdot 4 = 3(x^2 - 8) \] \[ 24 = 3x^2 - 24 \] Adding 24 to both sides: \[ 48 = 3x^2 \] Dividing by 3: \[ x^2 = 16 \] ### Step 5: Solve for \( x \) Taking the square root of both sides gives: \[ x = \pm 4 \] ### Final Answer The values of \( x \) satisfying the equation are: \[ x = 4 \quad \text{and} \quad x = -4 \] ---

To solve the equation \( \tan^{-1}(x+3) - \tan^{-1}(x-3) = \sin^{-1}\left(\frac{3}{5}\right) \), we will follow these steps: ### Step 1: Evaluate \( \sin^{-1}\left(\frac{3}{5}\right) \) We know that \( \sin^{-1}\left(\frac{3}{5}\right) \) gives us an angle \( \theta \) such that \( \sin(\theta) = \frac{3}{5} \). We can find the corresponding value of \( \tan(\theta) \) using the Pythagorean theorem. Let \( \sin(\theta) = \frac{3}{5} \). Then, we can find \( \cos(\theta) \): \[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

The value of x that satisfies tan^(-1)(tan -3)=tan^(2)x is

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

Value of x satisfying tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) =(3pi)/(4)

The set of value of x, satisfying the equation tan^(2)(sin^(-1)x) gt 1 is :

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is -

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x