Home
Class 12
MATHS
If cos^-1 ((x^2-1)/(x^2+1))+ tan^-1 ((2x...

If `cos^-1 ((x^2-1)/(x^2+1))+ tan^-1 ((2x)/(x^2-1)) = (2pi)/3`, then x equal to (A) `sqrt(3)` (B) `2+sqrt(3)` (C) `2-sqrt(3)` (D) `-sqrt(3)`

A

2

B

`sqrt(3)`

C

4

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right) + \tan^{-1} \left( \frac{2x}{x^2 - 1} \right) = \frac{2\pi}{3}, \] we will follow these steps: ### Step 1: Rewrite the Cosine Inverse We start by rewriting the expression for \(\cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right)\). We can use the identity: \[ \cos^{-1}(y) = \pi - \tan^{-1} \left( \frac{\sqrt{1-y^2}}{y} \right) \] For \(y = \frac{x^2 - 1}{x^2 + 1}\), we calculate \(1 - y^2\): \[ 1 - y^2 = 1 - \left( \frac{x^2 - 1}{x^2 + 1} \right)^2 = 1 - \frac{(x^2 - 1)^2}{(x^2 + 1)^2} \] Calculating this gives: \[ = \frac{(x^2 + 1)^2 - (x^2 - 1)^2}{(x^2 + 1)^2} = \frac{(x^4 + 2x^2 + 1) - (x^4 - 2x^2 + 1)}{(x^2 + 1)^2} = \frac{4x^2}{(x^2 + 1)^2} \] Thus, \[ \sqrt{1 - y^2} = \frac{2x}{x^2 + 1} \] Now, substituting back we have: \[ \cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right) = \pi - \tan^{-1} \left( \frac{2x}{\frac{x^2 - 1}{x^2 + 1}} \right) \] ### Step 2: Substitute Back into the Equation Substituting this into the original equation gives: \[ \pi - \tan^{-1} \left( \frac{2x}{\frac{x^2 - 1}{x^2 + 1}} \right) + \tan^{-1} \left( \frac{2x}{x^2 - 1} \right) = \frac{2\pi}{3} \] This simplifies to: \[ \tan^{-1} \left( \frac{2x}{x^2 - 1} \right) - \tan^{-1} \left( \frac{2x}{\frac{x^2 - 1}{x^2 + 1}} \right) = \frac{\pi}{3} \] ### Step 3: Use the Tangent Difference Formula Using the tangent difference formula: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1} \left( \frac{a-b}{1+ab} \right) \] Let \(a = \frac{2x}{x^2 - 1}\) and \(b = \frac{2x}{\frac{x^2 - 1}{x^2 + 1}}\). ### Step 4: Solve for x Setting the equation equal to \(\frac{\pi}{3}\) and solving for \(x\) leads to: \[ \tan \left( \frac{\pi}{3} \right) = \sqrt{3} \] Thus, we have: \[ \frac{2x}{x^2 - 1} - \frac{2x}{\frac{x^2 - 1}{x^2 + 1}} = \frac{\sqrt{3}}{1 + \left( \frac{2x}{x^2 - 1} \cdot \frac{2x}{\frac{x^2 - 1}{x^2 + 1}} \right)} \] After simplifying, we find \(x = \sqrt{3}\). ### Final Result Thus, the value of \(x\) is: \[ \boxed{\sqrt{3}} \]

To solve the equation \[ \cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right) + \tan^{-1} \left( \frac{2x}{x^2 - 1} \right) = \frac{2\pi}{3}, \] we will follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)((2x)/(1-x^2))=pi/3 , then x is equal to (a) 1/(sqrt(3)) (b) -1/(sqrt(3)) (c) sqrt(3) (d) -(sqrt(3))/4

If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)((2x)/(1-x^2))=pi/3 , then x is equal to 1/(sqrt(3)) (b) -1/(sqrt(3)) (c) sqrt(3) (d) -(sqrt(3))/4

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

If 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-2)((2x)/(1-x^2))=pi/3, w h e r e|x|<1, then x is equal to 1/(sqrt(3)) (b) -1/(sqrt(3)) (c) sqrt(3) (d) -(sqrt(3))/4

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

If tan(cos^(-1)x)="sin"(cot^(-1)(1/2)) then x is equal to- a. 1/sqrt(5) b. 2/sqrt(5) c. 3/sqrt(5) d. sqrt(5)/3

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)1/x=tan^(-1)1/3, then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)

If cosx=(2cosy-1)/(2-cosy), where x , y in (0,pi) then tan(x/2)xxcot(y/2) is equal to (a) sqrt(2) (b) sqrt(3) (c) 1/(sqrt(2)) (d) 1/(sqrt(3))

If tan^(-1)(a+x)/a+tan^(-1)(a-x)/a=pi/6,t h e nx^2= 2sqrt(3)a (b) sqrt(3)a (c) 2sqrt(3)a^2 (d) none of these

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))